{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T19:40:10Z","timestamp":1731699610229,"version":"3.28.0"},"publisher-location":"Singapore","reference-count":29,"publisher":"Springer Nature Singapore","isbn-type":[{"value":"9789819600250","type":"print"},{"value":"9789819600267","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T00:00:00Z","timestamp":1731715200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T00:00:00Z","timestamp":1731715200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T00:00:00Z","timestamp":1731715200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T00:00:00Z","timestamp":1731715200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-981-96-0026-7_5","type":"book-chapter","created":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T19:00:50Z","timestamp":1731697250000},"page":"55-67","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Intent-Spectrum BotTracker: Tackling LLM-Based Social Media Bots Through an\u00a0Enhanced BotRGCN Model with\u00a0Intention and\u00a0Entropy Measurement"],"prefix":"10.1007","author":[{"given":"Jinglong","family":"Duan","sequence":"first","affiliation":[]},{"given":"Ziyu","family":"Li","sequence":"additional","affiliation":[]},{"given":"Xiaodan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Weihua","family":"Li","sequence":"additional","affiliation":[]},{"given":"Quan","family":"Bai","sequence":"additional","affiliation":[]},{"given":"Minh","family":"Nguyen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,16]]},"reference":[{"issue":"1","key":"5_CR1","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1109\/TNSM.2020.2972405","volume":"17","author":"A Abou Daya","year":"2020","unstructured":"Abou Daya, A., Salahuddin, M.A., Limam, N., Boutaba, R.: BotChase: Graph-based bot detection using machine learning. IEEE Trans. Netw. Serv. Manage. 17(1), 15\u201329 (2020)","journal-title":"IEEE Trans. Netw. Serv. Manage."},{"key":"5_CR2","doi-asserted-by":"crossref","unstructured":"Alothali, E., Zaki, N., Mohamed, E.A., Alashwal, H.: Detecting social bots on Twitter: a literature review. In: 2018 International Conference on Innovations in Information Technology (IIT), pp. 175\u2013180. IEEE (2018)","DOI":"10.1109\/INNOVATIONS.2018.8605995"},{"key":"5_CR3","unstructured":"Antypas, D., Ushio, A., Camacho-Collados, J., Neves, L., Silva, V., Barbieri, F.: Twitter topic classification. arXiv preprint arXiv:2209.09824 (2022)"},{"key":"5_CR4","doi-asserted-by":"publisher","unstructured":"Bessi, A., Ferrara, E.: Social bots distort the 2016 U.S. presidential election online discussion. First monday 21(11) (2016). https:\/\/doi.org\/10.5210\/fm.v21i11.7090","DOI":"10.5210\/fm.v21i11.7090"},{"issue":"10","key":"5_CR5","doi-asserted-by":"publisher","first-page":"1378","DOI":"10.2105\/AJPH.2018.304567","volume":"108","author":"DA Broniatowski","year":"2018","unstructured":"Broniatowski, D.A., et al.: Weaponized health communication: Twitter bots and Russian trolls amplify the vaccine debate. Am. J. Public Health 108(10), 1378\u20131384 (2018)","journal-title":"Am. J. Public Health"},{"key":"5_CR6","unstructured":"Busbridge, D., Sherburn, D., Cavallo, P., Hammerla, N.Y.: Relational graph attention networks. arXiv preprint arXiv:1904.05811 (2019)"},{"key":"5_CR7","doi-asserted-by":"crossref","unstructured":"Chiu, T.K.: The impact of generative ai (GenAI) on practices, policies and research direction in education: a case of ChatGPT and midjourney. Interact. Learn. Environ. 1\u201317 (2023)","DOI":"10.1080\/10494820.2023.2253861"},{"issue":"1","key":"5_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40537-017-0074-7","volume":"4","author":"S Chowdhury","year":"2017","unstructured":"Chowdhury, S., et al.: Botnet detection using graph-based feature clustering. J. Big Data 4(1), 1\u201323 (2017). https:\/\/doi.org\/10.1186\/s40537-017-0074-7","journal-title":"J. Big Data"},{"key":"5_CR9","doi-asserted-by":"crossref","unstructured":"Feng, S., Wan, H., Wang, N., Li, J., Luo, M.: Twibot-20: a comprehensive Twitter bot detection benchmark. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 4485\u20134494 (2021)","DOI":"10.1145\/3459637.3482019"},{"key":"5_CR10","doi-asserted-by":"crossref","unstructured":"Feng, S., Wan, H., Wang, N., Luo, M.: BotRGCN: Twitter bot detection with relational graph convolutional networks. In: Proceedings of the 2021 IEEE\/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 236\u2013239 (2021)","DOI":"10.1145\/3487351.3488336"},{"issue":"20","key":"5_CR11","doi-asserted-by":"publisher","first-page":"59253","DOI":"10.1007\/s11042-023-17644-4","volume":"83","author":"L Gai","year":"2023","unstructured":"Gai, L., Xing, M., Chen, W., Zhang, Y., Qiao, X.: Comparing CNN-based and transformer-based models for identifying lung cancer: which is more effective? Multimed. Tools Appl. 83(20), 59253\u201359269 (2023). https:\/\/doi.org\/10.1007\/s11042-023-17644-4","journal-title":"Multimed. Tools Appl."},{"issue":"2","key":"5_CR12","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1002\/poi3.184","volume":"12","author":"R Gorwa","year":"2020","unstructured":"Gorwa, R., Guilbeault, D.: Unpacking the social media bot: a typology to guide research and policy. Policy Internet 12(2), 225\u2013248 (2020)","journal-title":"Policy Internet"},{"key":"5_CR13","unstructured":"Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 30 (2017)"},{"key":"5_CR14","doi-asserted-by":"crossref","unstructured":"Heidari, M., James\u00a0Jr, H., Uzuner, O.: An empirical study of machine learning algorithms for social media bot detection. In: 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1\u20135. IEEE (2021)","DOI":"10.1109\/IEMTRONICS52119.2021.9422605"},{"key":"5_CR15","doi-asserted-by":"crossref","unstructured":"Kaubiyal, J., Jain, A.K.: A feature based approach to detect fake profiles in Twitter. In: Proceedings of the 3rd International Conference on Big Data and Internet of Things, pp. 135\u2013139 (2019)","DOI":"10.1145\/3361758.3361784"},{"key":"5_CR16","unstructured":"Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)"},{"key":"5_CR17","doi-asserted-by":"publisher","first-page":"312","DOI":"10.1016\/j.ins.2018.08.019","volume":"467","author":"S Kudugunta","year":"2018","unstructured":"Kudugunta, S., Ferrara, E.: Deep neural networks for bot detection. Inf. Sci. 467, 312\u2013322 (2018)","journal-title":"Inf. Sci."},{"key":"5_CR18","unstructured":"Liu, Y., et al.: Roberta: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)"},{"key":"5_CR19","doi-asserted-by":"crossref","unstructured":"Lu, H., Gong, D., Li, Z., Liu, F., Liu, F.: BotCS: a lightweight model for large-scale Twitter bot detection comparable to GNN-based models. In: ICC 2023-IEEE International Conference on Communications, pp. 2870\u20132876. IEEE (2023)","DOI":"10.1109\/ICC45041.2023.10278669"},{"issue":"4","key":"5_CR20","doi-asserted-by":"publisher","first-page":"102250","DOI":"10.1016\/j.ipm.2020.102250","volume":"57","author":"M Orabi","year":"2020","unstructured":"Orabi, M., Mouheb, D., Al Aghbari, Z., Kamel, I.: Detection of bots in social media: a systematic review. Inf. Process. Manag. 57(4), 102250 (2020)","journal-title":"Inf. Process. Manag."},{"issue":"1","key":"5_CR21","first-page":"5485","volume":"21","author":"C Raffel","year":"2020","unstructured":"Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485\u20135551 (2020)","journal-title":"J. Mach. Learn. Res."},{"key":"5_CR22","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2020.101715","volume":"91","author":"J Rodr\u00edguez-Ruiz","year":"2020","unstructured":"Rodr\u00edguez-Ruiz, J., Mata-S\u00e1nchez, J.I., Monroy, R., Loyola-Gonzalez, O., L\u00f3pez-Cuevas, A.: A one-class classification approach for bot detection on Twitter. Comput. Secur. 91, 101715 (2020)","journal-title":"Comput. Secur."},{"key":"5_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"593","DOI":"10.1007\/978-3-319-93417-4_38","volume-title":"The Semantic Web","author":"M Schlichtkrull","year":"2018","unstructured":"Schlichtkrull, M., Kipf, T.N., Bloem, P., van\u00a0den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593\u2013607. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-93417-4_38"},{"key":"5_CR24","doi-asserted-by":"crossref","unstructured":"Sharevski, F., Jachim, P., Florek, K.: To tweet or not to tweet: Covertly manipulating a Twitter debate on vaccines using malware-induced misperceptions. In: Proceedings of the 15th International Conference on Availability, Reliability and Security, pp. 1\u201312 (2020)","DOI":"10.1145\/3407023.3407025"},{"key":"5_CR25","doi-asserted-by":"crossref","unstructured":"Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., Sun, Y.: Masked label prediction: Unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509 (2020)","DOI":"10.24963\/ijcai.2021\/214"},{"key":"5_CR26","unstructured":"Veli\u010dkovi\u0107, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)"},{"key":"5_CR27","doi-asserted-by":"crossref","unstructured":"Wei, F., Nguyen, U.T.: Twitter bot detection using bidirectional long short-term memory neural networks and word embeddings. In: 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), pp. 101\u2013109. IEEE (2019)","DOI":"10.1109\/TPS-ISA48467.2019.00021"},{"key":"5_CR28","unstructured":"Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)"},{"issue":"4","key":"5_CR29","doi-asserted-by":"publisher","first-page":"488","DOI":"10.1109\/TDSC.2015.2410792","volume":"13","author":"Z Yang","year":"2015","unstructured":"Yang, Z., Xue, J., Yang, X., Wang, X., Dai, Y.: VoteTrust: Leveraging friend invitation graph to defend against social network sybils. IEEE Trans. Dependable Secure Comput. 13(4), 488\u2013501 (2015)","journal-title":"IEEE Trans. Dependable Secure Comput."}],"container-title":["Lecture Notes in Computer Science","Knowledge Management and Acquisition for Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-96-0026-7_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T19:03:44Z","timestamp":1731697424000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-96-0026-7_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,16]]},"ISBN":["9789819600250","9789819600267"],"references-count":29,"URL":"https:\/\/doi.org\/10.1007\/978-981-96-0026-7_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,11,16]]},"assertion":[{"value":"16 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PKAW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Principle and Practice of Data and Knowledge Acquisition Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kyoto","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Japan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 November 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 November 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"pkaw2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/pkawwebsite.github.io\/2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}