{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T07:47:39Z","timestamp":1743148059831,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":30,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789811994821"},{"type":"electronic","value":"9789811994838"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-981-19-9483-8_22","type":"book-chapter","created":{"date-parts":[[2023,5,27]],"date-time":"2023-05-27T11:02:15Z","timestamp":1685185335000},"page":"255-266","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Partitional Technique for Searching Initial Cluster Centers in K-means Algorithm"],"prefix":"10.1007","author":[{"given":"Md.","family":"Hamidur Rahman","sequence":"first","affiliation":[]},{"given":"Momotaz","family":"Begum","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,28]]},"reference":[{"key":"22_CR1","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1109\/IITSI.2010.74","volume":"2010","author":"S Na","year":"2010","unstructured":"Na S, Xumin L, Yong G (2010) Research on k-means clustering algorithm: an improved k-means clustering algorithm. Third Int Symp Intell Inf Technol Secur Inform 2010:63\u201367. https:\/\/doi.org\/10.1109\/IITSI.2010.74","journal-title":"Third Int Symp Intell Inf Technol Secur Inform"},{"key":"22_CR2","doi-asserted-by":"publisher","unstructured":"Xu H, Yao S, Li Q, Ye Z (2020) An improved K-means clustering algorithm. In: 2020 IEEE 5th international symposium on smart and wireless systems within the conferences on intelligent data acquisition and advanced computing systems (IDAACS-SWS), pp 1\u20135. https:\/\/doi.org\/10.1109\/IDAACS-SWS50031.2020.9297060.","DOI":"10.1109\/IDAACS-SWS50031.2020.9297060"},{"key":"22_CR3","doi-asserted-by":"publisher","first-page":"283","DOI":"10.1023\/A:1009769707641","volume":"2","author":"Z Huang","year":"1998","unstructured":"Huang Z (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Disc 2:283\u2013304","journal-title":"Data Min Knowl Disc"},{"key":"22_CR4","doi-asserted-by":"crossref","unstructured":"Tian Z, Ramakrishnan R, Miron L (1996) BIRCH: an efficient data clustering method for very large databases. ACM SIGMOD Rec 25(2):103\u2013114","DOI":"10.1145\/235968.233324"},{"key":"22_CR5","doi-asserted-by":"crossref","unstructured":"Guha S, Rastogi R, Shim K (1998) CURE: an efficient clustering algorithm for large databases. SIGMOD'98, Seattle, Washington, pp 73\u201384","DOI":"10.1145\/276305.276312"},{"key":"22_CR6","unstructured":"Ester BM, Kriegel HP, Sander J, Xu X (1996) A density based algorithm for discovering clusters in large spatial databases. In: Proceeding of 1996 international conference on knowledge discovery and data mining, pp 226\u2013231"},{"key":"22_CR7","doi-asserted-by":"crossref","unstructured":"Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) OPTICS: ordering points to identify the clustering structure. ACM SIGMOD Record 28(2):49\u201360","DOI":"10.1145\/304181.304187"},{"issue":"6191","key":"22_CR8","doi-asserted-by":"publisher","first-page":"1492","DOI":"10.1126\/science.1242072","volume":"344","author":"A Rodriguez","year":"2014","unstructured":"Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492\u20131496","journal-title":"Science"},{"key":"22_CR9","unstructured":"Sheikholeslami G, Chatterjee S, Zhang A (1998) WaveCluster: a multi-resolution clustering approach for very large spatial databases. In: Proceeding of the 24th international conference on very large data bases (VLDB '98), pp 428\u2013439"},{"key":"22_CR10","doi-asserted-by":"publisher","unstructured":"Begum M, Das BC, Hossain MZ, Saha A, Papry KA (2021) An improved Kohonen self-organizing map clustering algorithm for high-dimensional data sets. Indones J Electr Eng Comput Sci 24(1):600\u2013610. ISSN: 2502-4752. https:\/\/doi.org\/10.11591\/ijeecs.v24.i1.pp600-610","DOI":"10.11591\/ijeecs.v24.i1.pp600-610"},{"key":"22_CR11","doi-asserted-by":"crossref","unstructured":"Sun H, Chen Y, Lai J, Wang Y, Liu X, Identifying tourists and locals by K-means clustering method from mobile phone signaling data. J Transport Eng Part A: Syst 147(10):04021070","DOI":"10.1061\/JTEPBS.0000580"},{"key":"22_CR12","unstructured":"Hutagalung J, Ginantra NLSR, Bhawika GW, Parwita WGS, Wanto A, Panjaitan PD (2020) COVID-19 cases and deaths in Southeast Asia clustering using k-means algorithm. In: Annual Conference on Science and Technology Research (ACOSTER) 2020, 20\u201321 June 2020, Medan, Indonesia"},{"key":"22_CR13","doi-asserted-by":"publisher","unstructured":"Khorshidi N, Parsa M, Lentz DR, Sobhanverdi J (2021) Identification of heavy metal pollution sources and its associated risk assessment in an industrial town using the K-means clustering technique. Appl Geochem 135:105113, ISSN 0883-2927. https:\/\/doi.org\/10.1016\/j.apgeochem.2021.105113","DOI":"10.1016\/j.apgeochem.2021.105113"},{"key":"22_CR14","doi-asserted-by":"publisher","unstructured":"Mardi M, Keyvanpour MR (2021) GBKM: a new genetic based k-means clustering algorithm. In: 2021 7th international conference on web research (ICWR), pp 222\u2013226. https:\/\/doi.org\/10.1109\/ICWR51868.2021.9443113","DOI":"10.1109\/ICWR51868.2021.9443113"},{"key":"22_CR15","doi-asserted-by":"publisher","unstructured":"Cap\u00f3 M, P\u00e9rez A, Lozano JA (2022) An efficient split-merge re-start for the K-means algorithm. IEEE Trans Knowl Data Eng 34(4):1618\u20131627. https:\/\/doi.org\/10.1109\/TKDE.2020.3002926.","DOI":"10.1109\/TKDE.2020.3002926"},{"key":"22_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/ASYU52992.2021.9599017","volume":"2021","author":"Z Rahman","year":"2021","unstructured":"Rahman Z, Hossain MS, Hasan M, Imteaj A (2021) An enhanced method of initial cluster center selection for K-means algorithm. Innov Intell Syst Appl Conf (ASYU) 2021:1\u20136. https:\/\/doi.org\/10.1109\/ASYU52992.2021.9599017","journal-title":"Innov Intell Syst Appl Conf (ASYU)"},{"key":"22_CR17","doi-asserted-by":"publisher","unstructured":"Sen A, Pandey M, Chakravarty K (2020) Random centroid selection for K-means clustering: a proposed algorithm for improving clustering results. In: 2020 international conference on computer science, engineering and applications (ICCSEA), pp 1\u20134. https:\/\/doi.org\/10.1109\/ICCSEA49143.2020.9132921.","DOI":"10.1109\/ICCSEA49143.2020.9132921"},{"issue":"2","key":"22_CR18","doi-asserted-by":"publisher","first-page":"102","DOI":"10.12720\/ijoee.1.2.102-107","volume":"1","author":"M Begum","year":"2013","unstructured":"Begum M, Akthar MN (2013) KSOMKM: an efficient approach for high dimensional dataset clustering. Int J Electr Energy 1(2):102\u2013107. https:\/\/doi.org\/10.12720\/ijoee.1.2.102-107","journal-title":"Int J Electr Energy"},{"key":"22_CR19","doi-asserted-by":"publisher","first-page":"717","DOI":"10.1109\/ICRTIT.2011.5972376","volume":"2011","author":"RV Singh","year":"2011","unstructured":"Singh RV, Bhatia MPS (2011) Data clustering with modified K-means algorithm. Int Conf Recent Trends Inf Technol (ICRTIT) 2011:717\u2013721. https:\/\/doi.org\/10.1109\/ICRTIT.2011.5972376","journal-title":"Int Conf Recent Trends Inf Technol (ICRTIT)"},{"key":"22_CR20","doi-asserted-by":"crossref","unstructured":"Tajunisha S, Saravanan V (2010) Performance analysis of k-means with different initialization methods for high dimensional data. Int J Artif Intell Appl (IJAIA) 1(4):44\u201352","DOI":"10.5121\/ijaia.2010.1404"},{"key":"22_CR21","doi-asserted-by":"publisher","unstructured":"Yuan, Yang H (2019) Research on K-value selection method of K-means clustering algorithm. J 2(2):226\u2013235. https:\/\/doi.org\/10.3390\/j2020016","DOI":"10.3390\/j2020016"},{"key":"22_CR22","doi-asserted-by":"publisher","first-page":"47169","DOI":"10.1109\/ACCESS.2021.3068074","volume":"9","author":"K Kandali","year":"2021","unstructured":"Kandali K, Bennis L, Bennis H (2021) A New hybrid routing protocol using a modified K-means clustering algorithm and continuous hopfield network for VANET. IEEE Access 9:47169\u201347183. https:\/\/doi.org\/10.1109\/ACCESS.2021.3068074","journal-title":"IEEE Access"},{"key":"22_CR23","doi-asserted-by":"crossref","unstructured":"Motwani M, Arora N, Gupta A (2019) A study on initial centroids selection for partitional clustering algorithms. In: Software engineering. Springer, pp 211\u2013220","DOI":"10.1007\/978-981-10-8848-3_21"},{"key":"22_CR24","unstructured":"http:\/\/ijcsit.com\/docs\/Volume%205\/vol5issue06\/ijcsit2014050688.pdf."},{"key":"22_CR25","doi-asserted-by":"publisher","first-page":"305","DOI":"10.1007\/s00500-018-3280-0","volume":"23","author":"Z He","year":"2019","unstructured":"He Z, Yu C (2019) Clustering stability-based evolutionary K-Means. Soft Comput 23:305\u2013321. https:\/\/doi.org\/10.1007\/s00500-018-3280-0","journal-title":"Soft Comput"},{"key":"22_CR26","unstructured":"Zhao Y, Zhou X (2021) K-means clustering algorithm and its improvement research. In: Journal of Physics: Conference Series, Volume 1873, 2021 2nd International Workshop on Electronic communication and Artificial Intelligence (IWECAI 2021), 12\u201314 March 2021, Nanjing, China"},{"key":"22_CR27","doi-asserted-by":"publisher","unstructured":"Ghazal TM, Hussain MZ, Said RA, Nadeem A, Hasan MK, Ahmad M, Khan MA, Naseem MT, Intelligent automation and soft computing. 30(2):735\u2013742. https:\/\/scholarworks.bwise.kr\/gachon\/handle\/2020.sw.gachon\/81931, https:\/\/doi.org\/10.32604\/iasc.2021.019067","DOI":"10.32604\/iasc.2021.019067"},{"key":"22_CR28","doi-asserted-by":"publisher","unstructured":"Patra GK, sahu KK, Normalization: a preprocessing stage. https:\/\/doi.org\/10.48550\/arXiv.1503.06462","DOI":"10.48550\/arXiv.1503.06462"},{"key":"22_CR29","unstructured":"Newman D, Hettich S, Blake C, Merz C (1998) UCI repository of machine learning databases. http:\/\/www.ics.uci.edu\/~mlearn\/MLRepository.html"},{"key":"22_CR30","unstructured":"https:\/\/en.wikipedia.org\/wiki\/Maxima_and_minima"}],"container-title":["Lecture Notes in Networks and Systems","Proceedings of the Fourth International Conference on Trends in Computational and Cognitive Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-19-9483-8_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,27]],"date-time":"2023-05-27T11:11:52Z","timestamp":1685185912000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-19-9483-8_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9789811994821","9789811994838"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-981-19-9483-8_22","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"28 May 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}