{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T01:28:08Z","timestamp":1740101288032,"version":"3.37.3"},"publisher-location":"Singapore","reference-count":26,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789811992964"},{"type":"electronic","value":"9789811992971"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-981-19-9297-1_6","type":"book-chapter","created":{"date-parts":[[2023,1,19]],"date-time":"2023-01-19T10:33:02Z","timestamp":1674124382000},"page":"62-74","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Attentive Relational State Representation for\u00a0Intelligent Joint Operation Simulation"],"prefix":"10.1007","author":[{"given":"Renlong","family":"Chen","sequence":"first","affiliation":[]},{"given":"Ling","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Shaoqiu","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Yabin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Cui","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8243-4731","authenticated-orcid":false,"given":"Ying","family":"Tan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,20]]},"reference":[{"key":"6_CR1","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1016\/j.artint.2018.01.002","volume":"258","author":"SV Albrecht","year":"2018","unstructured":"Albrecht, S.V., Stone, P.: Autonomous agents modelling other agents: a comprehensive survey and open problems. Artif. Intell. 258, 66\u201395 (2018)","journal-title":"Artif. Intell."},{"issue":"4","key":"6_CR2","doi-asserted-by":"publisher","first-page":"819","DOI":"10.1287\/moor.27.4.819.297","volume":"27","author":"DS Bernstein","year":"2002","unstructured":"Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized control of Markov decision processes. Math. Oper. Res. 27(4), 819\u2013840 (2002)","journal-title":"Math. Oper. Res."},{"key":"6_CR3","unstructured":"Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. arXiv preprint arXiv:1301.7363 (2013)"},{"key":"6_CR4","doi-asserted-by":"crossref","unstructured":"Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(2), 156\u2013172 (2008)","DOI":"10.1109\/TSMCC.2007.913919"},{"issue":"746\u2013752","key":"6_CR5","first-page":"2","volume":"1998","author":"C Claus","year":"1998","unstructured":"Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent systems. AAAI\/IAAI 1998(746\u2013752), 2 (1998)","journal-title":"AAAI\/IAAI"},{"key":"6_CR6","doi-asserted-by":"crossref","unstructured":"Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)","DOI":"10.1609\/aaai.v32i1.11794"},{"key":"6_CR7","unstructured":"Guestrin, C., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning. In: ICML, vol. 2, pp. 227\u2013234. Citeseer (2002)"},{"key":"6_CR8","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1007\/978-3-319-71682-4_5","volume-title":"Autonomous Agents and Multiagent Systems","author":"JK Gupta","year":"2017","unstructured":"Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using deep reinforcement learning. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10642, pp. 66\u201383. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-71682-4_5"},{"issue":"54","key":"6_CR9","first-page":"1","volume":"20","author":"M H\u00fcttenrauch","year":"2019","unstructured":"H\u00fcttenrauch, M., Adrian, S., Neumann, G., et al.: Deep reinforcement learning for swarm systems. J. Mach. Learn. Res. 20(54), 1\u201331 (2019)","journal-title":"J. Mach. Learn. Res."},{"issue":"5","key":"6_CR10","doi-asserted-by":"publisher","first-page":"1242","DOI":"10.1109\/TCYB.2015.2424257","volume":"46","author":"W Li","year":"2015","unstructured":"Li, W.: Notion of control-law module and modular framework of cooperative transportation using multiple nonholonomic robotic agents with physical rigid-formation-motion constraints. IEEE Trans. Cybern. 46(5), 1242\u20131248 (2015)","journal-title":"IEEE Trans. Cybern."},{"key":"6_CR11","unstructured":"Lowe, R., Wu, Y.I., Tamar, A., Harb, J., Pieter Abbeel, O., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"6_CR12","unstructured":"Mao, H., Gong, Z., Ni, Y., Xiao, Z.: ACCNet: actor-coordinator-critic net for \u201clearning-to-communicate\u201d with deep multi-agent reinforcement learning. arXiv preprint arXiv:1706.03235 (2017)"},{"key":"6_CR13","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-28929-8","volume-title":"A Concise Introduction to Decentralized POMDPs","author":"FA Oliehoek","year":"2016","unstructured":"Oliehoek, F.A., Amato, C.: A Concise Introduction to Decentralized POMDPs. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-28929-8"},{"key":"6_CR14","unstructured":"Omidshafiei, S., Pazis, J., Amato, C., How, J.P., Vian, J.: Deep decentralized multi-task multi-agent reinforcement learning under partial observability. In: International Conference on Machine Learning, pp. 2681\u20132690. PMLR (2017)"},{"key":"6_CR15","unstructured":"Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy optimization. In: International Conference on Machine Learning, pp. 1889\u20131897. PMLR (2015)"},{"key":"6_CR16","unstructured":"Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)"},{"issue":"7","key":"6_CR17","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1016\/j.artint.2006.02.006","volume":"171","author":"Y Shoham","year":"2007","unstructured":"Shoham, Y., Powers, R., Grenager, T.: If multi-agent learning is the answer, what is the question? Artif. Intell. 171(7), 365\u2013377 (2007)","journal-title":"Artif. Intell."},{"issue":"1","key":"6_CR18","doi-asserted-by":"publisher","first-page":"325","DOI":"10.1109\/TCYB.2015.2402192","volume":"46","author":"S Su","year":"2015","unstructured":"Su, S., Lin, Z., Garcia, A.: Distributed synchronization control of multiagent systems with unknown nonlinearities. IEEE Trans. Cybern. 46(1), 325\u2013338 (2015)","journal-title":"IEEE Trans. Cybern."},{"key":"6_CR19","unstructured":"Sukhbaatar, S., Fergus, R., et al.: Learning multiagent communication with backpropagation. In: Advances in Neural Information Processing Systems, vol. 29 (2016)"},{"key":"6_CR20","unstructured":"Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296 (2017)"},{"issue":"6","key":"6_CR21","doi-asserted-by":"publisher","first-page":"2687","DOI":"10.1109\/TCYB.2019.2904742","volume":"50","author":"T Tan","year":"2019","unstructured":"Tan, T., Bao, F., Deng, Y., Jin, A., Dai, Q., Wang, J.: Cooperative deep reinforcement learning for large-scale traffic grid signal control. IEEE Trans. Cybern. 50(6), 2687\u20132700 (2019)","journal-title":"IEEE Trans. Cybern."},{"key":"6_CR22","doi-asserted-by":"crossref","unstructured":"Tan, Y., Zheng, Z.Y.: Research advance in swarm robotics. Defence Technol. 9(1), 18\u201339 (2013)","DOI":"10.1016\/j.dt.2013.03.001"},{"key":"6_CR23","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"6_CR24","unstructured":"Veli\u010dkovi\u0107, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)"},{"key":"6_CR25","unstructured":"Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., Wang, J.: Mean field multi-agent reinforcement learning. In: International Conference on Machine Learning, pp. 5571\u20135580. PMLR (2018)"},{"key":"6_CR26","doi-asserted-by":"crossref","unstructured":"Zhang, K., Yang, Z., Liu, H., Zhang, T., Basar, T.: Fully decentralized multi-agent reinforcement learning with networked agents. In: International Conference on Machine Learning, pp. 5872\u20135881. PMLR (2018)","DOI":"10.1109\/CDC.2018.8619581"}],"container-title":["Communications in Computer and Information Science","Data Mining and Big Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-19-9297-1_6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,19]],"date-time":"2023-01-19T11:30:30Z","timestamp":1674127830000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-19-9297-1_6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9789811992964","9789811992971"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-981-19-9297-1_6","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"20 January 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DMBD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Data Mining and Big Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Beijing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dmbd2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"135","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"62","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"46% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.8","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2-3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}