{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:49:48Z","timestamp":1726184988867},"publisher-location":"Singapore","reference-count":20,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789811992964"},{"type":"electronic","value":"9789811992971"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-981-19-9297-1_22","type":"book-chapter","created":{"date-parts":[[2023,1,19]],"date-time":"2023-01-19T05:33:02Z","timestamp":1674106382000},"page":"305-319","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["GAP: Goal-Aware Prediction with\u00a0Hierarchical Interactive Representation for\u00a0Vehicle Trajectory"],"prefix":"10.1007","author":[{"given":"Ding","family":"Li","sequence":"first","affiliation":[]},{"given":"Qichao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Shuai","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Yifeng","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Dongbin","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,20]]},"reference":[{"key":"22_CR1","doi-asserted-by":"crossref","unstructured":"Wang, J., Zhang, Q., Zhao, D., Chen, Y.: Lane change decision-making through deep reinforcement learning with rule-based constraints. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20136 (2019)","DOI":"10.1109\/IJCNN.2019.8852110"},{"issue":"6","key":"22_CR2","doi-asserted-by":"publisher","first-page":"2064","DOI":"10.1109\/TNNLS.2019.2927869","volume":"31","author":"H Li","year":"2020","unstructured":"Li, H., Zhang, Q., Zhao, D.: Deep reinforcement learning-based automatic exploration for navigation in unknown environment. IEEE Trans. Neural Netw. Learn. Syst. 31(6), 2064\u20132076 (2020)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"22_CR3","doi-asserted-by":"crossref","unstructured":"Chang, M.-F., Lambert, J., Sangkloy, P., et al.: Argoverse: 3d tracking and forecasting with rich maps. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8740\u20138749 (2019)","DOI":"10.1109\/CVPR.2019.00895"},{"key":"22_CR4","doi-asserted-by":"crossref","unstructured":"Gao, J., Sun, C., Zhao, H., et al.: VectorNet: encoding HD maps and agent dynamics from vectorized representation. In: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11525\u201311533 (2020)","DOI":"10.1109\/CVPR42600.2020.01154"},{"key":"22_CR5","doi-asserted-by":"crossref","unstructured":"Phan-Minh, T., Grigore, E.C., Boulton, F.A., et al.: CoverNet: multimodal behavior prediction using trajectory sets. In: 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14074\u201314083 (2020)","DOI":"10.1109\/CVPR42600.2020.01408"},{"key":"22_CR6","unstructured":"Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: MultiPath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. In: Conference on Robot Learning (CoRL) (2019)"},{"key":"22_CR7","unstructured":"Song, H., Luan, D., Ding, W., et al.: Learning to predict vehicle trajectories with model-based planning. In: Conference on Robot Learning (CoRL) (2021)"},{"key":"22_CR8","unstructured":"Zhao, H., Gao, J., Lan, T., et al.: TNT: Target-driveN trajectory prediction. In: Conference on Robot Learning (CoRL) (2020)"},{"key":"22_CR9","doi-asserted-by":"crossref","unstructured":"Suo, S., Regalado, S., Casas, S., Urtasun, R.: Trafficsim: learning to simulate realistic multi-agent behaviors. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10400\u201310409 (2021)","DOI":"10.1109\/CVPR46437.2021.01026"},{"key":"22_CR10","doi-asserted-by":"crossref","unstructured":"Suo, S., Regalado, S., Casas, S., Urtasun, R.: TrafficSim: learning to simulate realistic multi-agent behaviors. In: 2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10400\u201310409 (2021)","DOI":"10.1109\/CVPR46437.2021.01026"},{"key":"22_CR11","doi-asserted-by":"crossref","unstructured":"Liu, Y., Zhang, J., Fang, L., et al.: multimodal motion prediction with stacked transformers. In: 2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7577\u20137586 (2021)","DOI":"10.1109\/CVPR46437.2021.00749"},{"key":"22_CR12","doi-asserted-by":"crossref","unstructured":"Chaochen, Z., Zhang, Q., Li, D., et al.: Vehicle trajectory prediction based on graph attention network. In: 2021 International Conference on Cognitive Systems and Information Processing (ICCSIP) (2021)","DOI":"10.1007\/978-981-16-9247-5_33"},{"key":"22_CR13","doi-asserted-by":"crossref","unstructured":"Bansal, M., Krizhevsky, A., Ogale, A.: ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst. arXiv preprint arXiv:1812.03079 (2018)","DOI":"10.15607\/RSS.2019.XV.031"},{"key":"22_CR14","doi-asserted-by":"crossref","unstructured":"Cui, H., Radosavljevic, V., Chou, F.-C., et al.: Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2090\u20132096 (2019)","DOI":"10.1109\/ICRA.2019.8793868"},{"key":"22_CR15","unstructured":"Khandelwal, S., Qi, W., Singh, J., Hartnett, A., Ramanan, D.: What-if motion prediction for autonomous driving. arXiv preprint arXiv:2008.10587 (2020)"},{"key":"22_CR16","unstructured":"Ngiam, J., Caine, B., Vasudevan, V., et al.: Scene Transformer: A unified architecture for predicting multiple agent trajectories. arXiv preprint arXiv:2106.08417 (2021)"},{"key":"22_CR17","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JAS.2021.1004269","volume":"9","author":"J Wang","year":"2022","unstructured":"Wang, J., Zhang, Q., Zhao, D.: Highway lane change decision-making via attention-based deep reinforcement learning. IEEE\/CAA J. Autom. Sinica. 9, 1\u20137 (2022)","journal-title":"IEEE\/CAA J. Autom. Sinica."},{"key":"22_CR18","unstructured":"Lei Ba, J., Kiros, J.R., Hinton, G.E.: Layer Normalization. arXiv e-prints. arXiv:1607.06450, July 2016"},{"issue":"2","key":"22_CR19","doi-asserted-by":"publisher","first-page":"270","DOI":"10.1162\/neco.1989.1.2.270","volume":"1","author":"RJ Williams","year":"1989","unstructured":"Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270\u2013280 (1989)","journal-title":"Neural Comput."},{"key":"22_CR20","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for Stochastic Optimization. In: 3rd International Conference for Learning Representations (ICLR) (2015)"}],"container-title":["Communications in Computer and Information Science","Data Mining and Big Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-19-9297-1_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,19]],"date-time":"2023-01-19T06:35:02Z","timestamp":1674110102000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-19-9297-1_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9789811992964","9789811992971"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-981-19-9297-1_22","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"20 January 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DMBD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Data Mining and Big Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Beijing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dmbd2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"135","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"62","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"46% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.8","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2-3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}