{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:49:48Z","timestamp":1726184988311},"publisher-location":"Singapore","reference-count":30,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789811992964"},{"type":"electronic","value":"9789811992971"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-981-19-9297-1_20","type":"book-chapter","created":{"date-parts":[[2023,1,19]],"date-time":"2023-01-19T10:33:02Z","timestamp":1674124382000},"page":"273-287","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["An Improved Multi-source Spatiotemporal Data Fusion Model Based on\u00a0the\u00a0Nearest Neighbor Grids for\u00a0PM2.5 Concentration Interpolation and\u00a0Prediction"],"prefix":"10.1007","author":[{"given":"Xiaxia","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Junjia","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Pengcheng","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Guoyin","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,20]]},"reference":[{"key":"20_CR1","doi-asserted-by":"crossref","unstructured":"Stafoggia, M., et al.: Estimation of daily PM 10 and PM 2.5 concentrations in Italy, 2013\u20132015, using a spatiotemporal land-use random-forest model. Environ. Int. 124(1), 170\u2013179(2019)","DOI":"10.1016\/j.envint.2019.01.016"},{"issue":"4","key":"20_CR2","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1136\/heartjnl-2014-306379","volume":"101","author":"M Chin","year":"2015","unstructured":"Chin, M.: Basic mechanisms for adverse cardiovascular events associated with air pollution. Heart 101(4), 253\u2013256 (2015)","journal-title":"Heart"},{"issue":"5","key":"20_CR3","first-page":"145","volume":"39","author":"C Yao","year":"2020","unstructured":"Yao, C., Cao, Z., Han, Y.: Industrial agglomeration, population urbanization, land urbanization and environment pollution. Areal Res. Dev. 39(5), 145\u2013149 (2020)","journal-title":"Areal Res. Dev."},{"key":"20_CR4","unstructured":"Zheng, Y., et al.: Forecasting fine-grained air quality based on big da ta. In: 21th ACM SIGKDD International Conference on Knowledge Discovery Data Mining., pp. 2267\u20132276 (2010)"},{"key":"20_CR5","doi-asserted-by":"crossref","unstructured":"Jutzeler, A., Li, J., Faltings, B.: A Region-based model for estimating urban air pollution. In: 28th AAAI Conference on Artificial Intelligence, pp. 425\u2013430 (2014)","DOI":"10.1609\/aaai.v28i1.8768"},{"key":"20_CR6","doi-asserted-by":"crossref","unstructured":"Chen, L., Cai, Y., Ding, Y., Lv, M., Yuan, C., Chen, G.: Spatially fine-grained urban air quality estimation using ensemble semi-supervised learning and pruning. In: 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1076\u20131087 (2016)","DOI":"10.1145\/2971648.2971725"},{"key":"20_CR7","doi-asserted-by":"crossref","unstructured":"Zheng, Y., Liu, F., Hsieh, H.: U-air: when urban air quality inference meets big data. In: 19th ACM SIGKDD The International Conference on Knowledge Discovery and Data Minin, pp. 1436\u20131444(2013)","DOI":"10.1145\/2487575.2488188"},{"key":"20_CR8","doi-asserted-by":"crossref","unstructured":"Liu, X., Wang, X., Zou, L., Xia, J., Pang, W.: Spatial imputation for air pollutants data sets via low rank matrix completion algorithm. Environ. Int. 139, Art. no. 105713 (2020)","DOI":"10.1016\/j.envint.2020.105713"},{"issue":"2","key":"20_CR9","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1016\/j.ins.2019.02.057","volume":"487","author":"M Qin","year":"2019","unstructured":"Qin, M., Du, Z., Zhang, F., Liu, R.: A matrix completion-based multiview learning method for imputing missing values in buoy monitoring data. Inf. Sci. 487(2), 18\u201330 (2019)","journal-title":"Inf. Sci."},{"issue":"23","key":"20_CR10","doi-asserted-by":"publisher","first-page":"2285","DOI":"10.1109\/TKDE.2018.2823740","volume":"30","author":"Z Qi","year":"2018","unstructured":"Qi, Z., Wang, T., Song, G., Hu, W., Zhang, Z.: Deep air learning interpolation, prediction, and feature analysis of fine-grained air quality. IEEE Trans. Knowl. Data Eng. 30(23), 2285\u20132297 (2018)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"20_CR11","doi-asserted-by":"crossref","unstructured":"Chen, Z., et al.: Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China. Atmos. Environ. 202(1), 180\u2013189 (2019)","DOI":"10.1016\/j.atmosenv.2019.01.027"},{"issue":"2","key":"20_CR12","doi-asserted-by":"publisher","first-page":"903","DOI":"10.5194\/amt-12-903-2019","volume":"12","author":"C Malings","year":"2019","unstructured":"Malings, C., et al.: Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring. Atmos. Meas. Tech. 12(2), 903\u2013920 (2019)","journal-title":"Atmos. Meas. Tech."},{"key":"20_CR13","doi-asserted-by":"crossref","unstructured":"Liu, N., Ma, R., Wang, Y., Zhang, L.: Inferring fine-grained air pollution map via a spatiotemporal super-resolution scheme. In: 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2019 ACM International Symposium ACM, pp. 498\u2013504 (2019)","DOI":"10.1145\/3341162.3345606"},{"key":"20_CR14","doi-asserted-by":"crossref","unstructured":"Ma, R., et al.: Fine-grained air pollution inference with mobile sensing systems: a weather-related deep autoencoder model. In: 2020 ACM on Interactive Mobile Wearable and Ubiquitous Technologies, Art. no. 52 (2020)","DOI":"10.1145\/3397322"},{"issue":"12","key":"20_CR15","first-page":"174","volume":"53","author":"J Li","year":"2014","unstructured":"Li, J., Heap, A.: Spatial interpolation methods applied in the environmental sciences-a review. Environ. Modell. Softw. 53(12), 174\u2013189 (2014)","journal-title":"Environ. Modell. Softw."},{"key":"20_CR16","doi-asserted-by":"crossref","unstructured":"Sekulic, A., Kilibarda, M., Heuvelink, G., Nikolic, M., Bajat, B.: Random Forest Spatial Interpolation. Remote Sens. 12, Art. no. 1687(2020)","DOI":"10.3390\/rs12101687"},{"key":"20_CR17","doi-asserted-by":"crossref","unstructured":"Wei, J., et al.: Estimating 1-KM-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens. Environ. 231, Art. no. 111221 (2019)","DOI":"10.1016\/j.rse.2019.111221"},{"key":"20_CR18","doi-asserted-by":"crossref","unstructured":"Wei, J., et al.: Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees. Atmos. Chem. Phys. 20(6), 3273\u20133289 (2020)","DOI":"10.5194\/acp-20-3273-2020"},{"key":"20_CR19","doi-asserted-by":"crossref","unstructured":"Li, T., Shen, H., Zeng, C., Yuan, Q., Zhang, L.: Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment. Atmos. Environ. 152(1), 477\u2013489 (2017)","DOI":"10.1016\/j.atmosenv.2017.01.004"},{"key":"20_CR20","doi-asserted-by":"crossref","unstructured":"Huang, G., Li, X., Zhang, B., Ren, J.: PM2.5 concentration forecasting at surface monitoring sites using GRU neural network based on empirical mode decomposition. Sci. Total Environ. 768(3), Art. no. 144516 (2021)","DOI":"10.1016\/j.scitotenv.2020.144516"},{"key":"20_CR21","doi-asserted-by":"crossref","unstructured":"Wu, X., Wang, Y., He, S., Wu, Z.: PM2.5_PM10 ratio prediction based on a long short-term memory neural network in Wuhan, China. Geosci. Model Dev. 13(3), 1499\u20131511 (2020)","DOI":"10.5194\/gmd-13-1499-2020"},{"issue":"8","key":"20_CR22","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735\u20131780 (1997)","journal-title":"Neural Comput."},{"key":"20_CR23","doi-asserted-by":"crossref","unstructured":"Ahmed, M., Xiao, Z., Shen, Y.: Estimation of ground PM2.5 concentrations in pakistan using convolutional neural network and multi-pollutant satellite images. Remote Sens. 14, Art. no. 1735 (2022)","DOI":"10.3390\/rs14071735"},{"issue":"10","key":"20_CR24","doi-asserted-by":"publisher","first-page":"367","DOI":"10.1175\/1520-0493(1959)087<0367:AOOAS>2.0.CO;2","volume":"87","author":"G Cressman","year":"1959","unstructured":"Cressman, G.: An operational objective analysis system. Mon. Weather Rev. 87(10), 367\u2013374 (1959)","journal-title":"Mon. Weather Rev."},{"issue":"5","key":"20_CR25","first-page":"120","volume":"9","author":"Z Liu","year":"2016","unstructured":"Liu, Z., Huang, R., Hu, Y., Fan, S., Feng, P.: Generating high spatiotemporal resolution LAI based on MODIS\/GF-1 data and combined Kriging-Cressman interpolation. Int. J. Agric. Biol. Eng. 9(5), 120\u2013131 (2016)","journal-title":"Int. J. Agric. Biol. Eng."},{"issue":"8","key":"20_CR26","doi-asserted-by":"publisher","first-page":"2933","DOI":"10.1109\/TITS.2018.2869768","volume":"20","author":"L Li","year":"2019","unstructured":"Li, L., Zhang, J., Wang, Y., Ran, B.: Missing value imputation for traffic-related time series data based on a multi-view learning method. IEEE Trans. Intell. Transp. Syst. 20(8), 2933\u20132943 (2019)","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"1","key":"20_CR27","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1559\/152304085783914686","volume":"12","author":"C Willmott","year":"1985","unstructured":"Willmott, C., Rowe, C., Philpot, W.: Small-scale climate maps: a sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. Am. Cartograph. 12(1), 5\u201316 (1985)","journal-title":"Am. Cartograph."},{"issue":"4","key":"20_CR28","doi-asserted-by":"publisher","first-page":"1300","DOI":"10.2307\/2532724","volume":"48","author":"R Cormack","year":"1992","unstructured":"Cormack, R., Cressie, N.: Statistics for spatial data. Int. Biometric Soc. 48(4), 1300\u20131302 (1992)","journal-title":"Int. Biometric Soc."},{"issue":"1","key":"20_CR29","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001)","journal-title":"Mach. Learn."},{"issue":"1","key":"20_CR30","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/s10994-006-6226-1","volume":"63","author":"P Geurts","year":"2006","unstructured":"Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3\u201342 (2006)","journal-title":"Mach. Learn."}],"container-title":["Communications in Computer and Information Science","Data Mining and Big Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-19-9297-1_20","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,19]],"date-time":"2023-01-19T11:34:22Z","timestamp":1674128062000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-19-9297-1_20"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9789811992964","9789811992971"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-981-19-9297-1_20","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"20 January 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DMBD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Data Mining and Big Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Beijing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dmbd2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"135","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"62","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"46% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.8","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2-3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}