{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:49:43Z","timestamp":1726184983373},"publisher-location":"Singapore","reference-count":37,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789811992964"},{"type":"electronic","value":"9789811992971"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-981-19-9297-1_17","type":"book-chapter","created":{"date-parts":[[2023,1,19]],"date-time":"2023-01-19T05:33:02Z","timestamp":1674106382000},"page":"223-239","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Deep Structured Graph Clustering Network"],"prefix":"10.1007","author":[{"given":"Sun","family":"Li","sequence":"first","affiliation":[]},{"given":"Zihan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yong","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Wenbo","family":"Li","sequence":"additional","affiliation":[]},{"given":"Hongliang","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Rong","family":"Song","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,20]]},"reference":[{"key":"17_CR1","unstructured":"Bellman, R.E.: Adaptive Control Processes: A Guided Tour. Princeton University Press (2015)"},{"key":"17_CR2","unstructured":"Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support vector clustering. J. Mach. Learn Res 2(Dec), 125\u2013137 (2001)"},{"key":"17_CR3","unstructured":"Bottou, L., Bengio, Y.: Convergence properties of the k-means algorithms. In: NeurIPS, pp. 585\u2013592 (1994)"},{"key":"17_CR4","unstructured":"Chen, G.: Deep Learning with Nonparametric Clustering. CoRR abs\/1501.03084 (2015)"},{"key":"17_CR5","unstructured":"Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: AISTATS, vol. 15, pp. 215\u2013223 (2011)"},{"key":"17_CR6","doi-asserted-by":"crossref","unstructured":"D\u2019Ambrosio, A., Amodio, S., Iorio, C., Pandolfo, G., Siciliano, R.: Adjusted concordance index: an extensionl of the adjusted rand index to fuzzy partitions. J. Classif. 38, 1\u201317 (2020)","DOI":"10.1007\/s00357-020-09367-0"},{"issue":"6","key":"17_CR7","doi-asserted-by":"publisher","first-page":"141","DOI":"10.1109\/MSP.2012.2211477","volume":"29","author":"L Deng","year":"2012","unstructured":"Deng, L.: The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141\u2013142 (2012)","journal-title":"IEEE Signal Process. Mag."},{"issue":"11","key":"17_CR8","doi-asserted-by":"publisher","first-page":"652","DOI":"10.1073\/pnas.35.11.652","volume":"35","author":"K Fan","year":"1949","unstructured":"Fan, K.: On a theorem of weyl concerning eigenvalues of linear transformations i. Proc. Natl. Acad. Sci. USA 35(11), 652 (1949)","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"17_CR9","doi-asserted-by":"crossref","unstructured":"Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: IJCAI, pp. 1753\u20131759 (2017)","DOI":"10.24963\/ijcai.2017\/243"},{"key":"17_CR10","doi-asserted-by":"crossref","unstructured":"Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: ICONIP, vol. 10635, pp. 373\u2013382 (2017)","DOI":"10.1007\/978-3-319-70096-0_39"},{"key":"17_CR11","doi-asserted-by":"crossref","unstructured":"Iandola, F.N., Moskewicz, M.W., Ashraf, K., Keutzer, K.: Firecaffe: near-linear acceleration of deep neural network training on compute clusters. In: CVPR, pp. 2592\u20132600 (2016)","DOI":"10.1109\/CVPR.2016.284"},{"key":"17_CR12","unstructured":"Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Upper Saddle River (1988)"},{"key":"17_CR13","unstructured":"Ji, P., Zhang, T., Li, H., Salzmann, M., Reid, I.D.: Deep subspace clustering networks. In: NeurIPS, pp. 24\u201333 (2017)"},{"issue":"3","key":"17_CR14","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1007\/BF02289588","volume":"32","author":"SC Johnson","year":"1967","unstructured":"Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241\u2013254 (1967)","journal-title":"Psychometrika"},{"key":"17_CR15","first-page":"361","volume":"5","author":"DD Lewis","year":"2004","unstructured":"Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361\u2013397 (2004)","journal-title":"J. Mach. Learn. Res."},{"key":"17_CR16","doi-asserted-by":"crossref","unstructured":"Li, T., Ding, C.H.Q.: The relationships among various nonnegative matrix factorization methods for clustering. In: ICDM, pp. 362\u2013371 (2006)","DOI":"10.1109\/ICDM.2006.160"},{"issue":"4","key":"17_CR17","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","volume":"17","author":"U von Luxburg","year":"2007","unstructured":"von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395\u2013416 (2007)","journal-title":"Stat. Comput."},{"key":"17_CR18","unstructured":"Maaten, L.v.d., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2605), 2605 2579\u20132605 (2008)"},{"key":"17_CR19","unstructured":"MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: BSMSP, pp. 281\u2013297 (1967)"},{"issue":"11","key":"17_CR20","doi-asserted-by":"publisher","first-page":"1693","DOI":"10.1109\/LGRS.2019.2909218","volume":"16","author":"SM Mousavi","year":"2019","unstructured":"Mousavi, S.M., Zhu, W., Ellsworth, W., Beroza, G.: Unsupervised clustering of seismic signals using deep convolutional autoencoders. IEEE Geosci. Remote Sens. 16(11), 1693\u20131697 (2019)","journal-title":"IEEE Geosci. Remote Sens."},{"key":"17_CR21","doi-asserted-by":"crossref","unstructured":"Nie, F., Wang, X., Huang, H.: Clustering and projected clustering with adaptive neighbors. In: ACM SIGKDD, pp. 977\u2013986 (2014)","DOI":"10.1145\/2623330.2623726"},{"issue":"11","key":"17_CR22","doi-asserted-by":"publisher","first-page":"1796","DOI":"10.1109\/TNN.2011.2162000","volume":"22","author":"F Nie","year":"2011","unstructured":"Nie, F., Zeng, Z., Tsang, I.W., Xu, D., Zhang, C.: Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans. Neural Netw. 22(11), 1796\u20131808 (2011)","journal-title":"IEEE Trans. Neural Netw."},{"issue":"11","key":"17_CR23","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1080\/14786440109462720","volume":"2","author":"K Pearson","year":"1901","unstructured":"Pearson, K.: On lines and planes of closest fit to systems of points in space. Lond. Edinburgh Dublin Philoso. Mag. J. Sci. 2(11), 559\u2013572 (1901)","journal-title":"Lond. Edinburgh Dublin Philoso. Mag. J. Sci."},{"key":"17_CR24","unstructured":"Peng, X., Xiao, S., Feng, J., Yau, W., Yi, Z.: Deep subspace clustering with sparsity prior. In: IJCAI, pp. 1925\u20131931 (2016)"},{"key":"17_CR25","doi-asserted-by":"crossref","unstructured":"Pinto, D., Bened\u00ed, J., Rosso, P.: Clustering narrow-domain short texts by using the kullback-leibler distance. In: Proceedings of Computational Linguistics and Intelligent Text Processing. vol. 4394, pp. 611\u2013622 (2007)","DOI":"10.1007\/978-3-540-70939-8_54"},{"key":"17_CR26","doi-asserted-by":"crossref","unstructured":"Rodriguez, M.Z., et al.: Clustering algorithms: a comparative approach. PLoS ONE 14(1), 1\u201331 (2019)","DOI":"10.1371\/journal.pone.0210236"},{"issue":"466","key":"17_CR27","first-page":"567","volume":"99","author":"D Ruppert","year":"2004","unstructured":"Ruppert, D.: The elements of statistical learning: Data mining, inference, and prediction. Am. Soc. Anesth. 99(466), 567\u2013567 (2004)","journal-title":"Am. Soc. Anesth."},{"issue":"11","key":"17_CR28","doi-asserted-by":"publisher","first-page":"4424","DOI":"10.1109\/TNNLS.2019.2955209","volume":"31","author":"D Shi","year":"2020","unstructured":"Shi, D., Zhu, L., Li, Y., Li, J., Nie, X.: Robust structured graph clustering. IEEE Trans. Neural Netw. Learn. Syst. 31(11), 4424\u20134436 (2020)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"17_CR29","doi-asserted-by":"crossref","unstructured":"Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.: Learning deep representations for graph clustering. In: AAAI, pp. 1293\u20131299 (2014)","DOI":"10.1609\/aaai.v28i1.8916"},{"key":"17_CR30","unstructured":"Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371\u20133408 (2010)"},{"issue":"6","key":"17_CR31","doi-asserted-by":"publisher","first-page":"2664","DOI":"10.1109\/TIP.2018.2810515","volume":"27","author":"W Wang","year":"2018","unstructured":"Wang, W., Yan, Y., Nie, F., Yan, S., Sebe, N.: Flexible manifold learning with optimal graph for image and video representation. IEEE Trans. Image Process. 27(6), 2664\u20132675 (2018)","journal-title":"IEEE Trans. Image Process."},{"key":"17_CR32","doi-asserted-by":"crossref","unstructured":"Wu, J., et al.: Deep comprehensive correlation mining for image clustering. In: ICCV, pp. 8149\u20138158 (2019)","DOI":"10.1109\/ICCV.2019.00824"},{"key":"17_CR33","first-page":"478","volume":"48","author":"J Xie","year":"2016","unstructured":"Xie, J., Girshick, R.B., Farhadi, A.: Unsupervised deep embedding for clustering analysis. 48, 478\u2013487 (2016)","journal-title":"Unsupervised deep embedding for clustering analysis."},{"key":"17_CR34","unstructured":"Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: Simultaneous deep learning and clustering. In: ICML, vol. 70, pp. 3861\u20133870 (2017)"},{"key":"17_CR35","doi-asserted-by":"crossref","unstructured":"Yang, Q., Wang, H., Li, T., Yang, Y.: Deep belief networks oriented clustering. In: ISKE, pp. 58\u201365 (2015)","DOI":"10.1109\/ISKE.2015.8"},{"issue":"11","key":"17_CR36","doi-asserted-by":"publisher","first-page":"5541","DOI":"10.1109\/TNNLS.2017.2786743","volume":"29","author":"Q Yin","year":"2018","unstructured":"Yin, Q., Wu, S., Wang, L.: Multiview clustering via unified and view-specific embeddings learning. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5541\u20135553 (2018)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"17_CR37","doi-asserted-by":"crossref","unstructured":"Zhou, Y., Gu, K., Huang, T.S.: Unsupervised representation adversarial learning network: from reconstruction to generation. In: IJCNN, pp. 1\u20138 (2019)","DOI":"10.1109\/IJCNN.2019.8852395"}],"container-title":["Communications in Computer and Information Science","Data Mining and Big Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-19-9297-1_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,19]],"date-time":"2023-01-19T06:33:32Z","timestamp":1674110012000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-19-9297-1_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9789811992964","9789811992971"],"references-count":37,"URL":"https:\/\/doi.org\/10.1007\/978-981-19-9297-1_17","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"20 January 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DMBD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Data Mining and Big Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Beijing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dmbd2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"135","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"62","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"46% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.8","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2-3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}