{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:49:40Z","timestamp":1726184980928},"publisher-location":"Singapore","reference-count":33,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789811992964"},{"type":"electronic","value":"9789811992971"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-981-19-9297-1_13","type":"book-chapter","created":{"date-parts":[[2023,1,19]],"date-time":"2023-01-19T05:33:02Z","timestamp":1674106382000},"page":"165-177","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Pose Sequence Model Using the\u00a0Encoder-Decoder Structure for\u00a03D Pose Estimation"],"prefix":"10.1007","author":[{"given":"Jiwei","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Lian","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Tianbo","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Jiaen","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Wendong","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Ying","family":"Tan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,20]]},"reference":[{"key":"13_CR1","unstructured":"Bishop, C.M.: Mixture Density Networks. IEEE Computer Society, Washington, DC (1994)"},{"key":"13_CR2","doi-asserted-by":"publisher","unstructured":"Bridgeman, L., Volino, M., Guillemaut, J.Y., Hilton, A.: Multi-person 3D pose estimation and tracking in sports. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2487\u20132496. IEEE, Long Beach, CA, USA, June 2019. https:\/\/doi.org\/10.1109\/CVPRW.2019.00304, https:\/\/ieeexplore.ieee.org\/document\/9025555\/","DOI":"10.1109\/CVPRW.2019.00304"},{"key":"13_CR3","doi-asserted-by":"publisher","unstructured":"Cai, Y., et al.: Exploiting Spatial-Temporal Relationships for 3D pose estimation via graph convolutional networks. In: 2019 IEEE\/CVF International Conference on Computer Vision (ICCV). pp. 2272\u20132281. IEEE, Seoul, Korea (South), October 2019. https:\/\/doi.org\/10.1109\/ICCV.2019.00236, https:\/\/ieeexplore.ieee.org\/document\/9009459\/","DOI":"10.1109\/ICCV.2019.00236"},{"key":"13_CR4","doi-asserted-by":"crossref","unstructured":"Chen, C.H., Ramanan, D.: 3D human pose estimation = 2D pose estimation + matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7035\u20137043, July 2017","DOI":"10.1109\/CVPR.2017.610"},{"key":"13_CR5","doi-asserted-by":"publisher","unstructured":"Chen, T., Fang, C., Shen, X., Zhu, Y., Chen, Z., Luo, J.: Anatomy-aware 3D human pose estimation with bone-based pose decomposition. IEEE Trans. Circ. Syst. Video Technol. 32(1), 198\u2013209 (2022). https:\/\/doi.org\/10.1109\/TCSVT.2021.3057267, https:\/\/ieeexplore.ieee.org\/document\/9347537\/","DOI":"10.1109\/TCSVT.2021.3057267"},{"key":"13_CR6","doi-asserted-by":"publisher","unstructured":"Dong, J., Jiang, W., Huang, Q., Bao, H., Zhou, X.: Fast and robust multi-person 3D pose estimation from multiple views. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 7784\u20137793. IEEE, Long Beach, CA, USA, June 2019. https:\/\/doi.org\/10.1109\/CVPR.2019.00798, https:\/\/ieeexplore.ieee.org\/document\/8953350\/","DOI":"10.1109\/CVPR.2019.00798"},{"key":"13_CR7","doi-asserted-by":"publisher","unstructured":"Fabbri, M., Lanzi, F., Calderara, S., Alletto, S., Cucchiara, R.: Compressed volumetric heatmaps for multi-person 3D pose estimation. In: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7202\u20137211. IEEE, Seattle, WA, USA, June 2020. https:\/\/doi.org\/10.1109\/CVPR42600.2020.00723, https:\/\/ieeexplore.ieee.org\/document\/9156316\/","DOI":"10.1109\/CVPR42600.2020.00723"},{"key":"13_CR8","doi-asserted-by":"crossref","unstructured":"Fang, H., Xu, Y., Wang, W., Liu, X., Zhu, S.: Learning pose grammar to encode human body configuration for 3D pose estimation. In: Proceedings of AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, pp. 6821\u20136828 (Feb2018)","DOI":"10.1609\/aaai.v32i1.12270"},{"key":"13_CR9","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.B.: Mask R-CNN (2017). http:\/\/arxiv.org\/abs\/1703.06870","DOI":"10.1109\/ICCV.2017.322"},{"key":"13_CR10","doi-asserted-by":"crossref","unstructured":"Kundu, J.N., Seth, S., Jampani, V., Rakesh, M., Babu, R.V., Chakraborty, A.: Self-supervised 3d human pose estimation via part guided novel image synthesis. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6152\u20136162, June 2020","DOI":"10.1109\/CVPR42600.2020.00619"},{"key":"13_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1007\/978-3-030-01234-2_8","volume-title":"Computer Vision \u2013 ECCV 2018","author":"K Lee","year":"2018","unstructured":"Lee, K., Lee, I., Lee, S.: Propagating LSTM: 3D pose estimation based on joint interdependency. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 123\u2013141. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_8"},{"key":"13_CR12","doi-asserted-by":"crossref","unstructured":"Li, C., Lee, G.H.: Generating multiple hypotheses for 3D human pose estimation with mixture density network. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9887\u20139895, June 2019","DOI":"10.1109\/CVPR.2019.01012"},{"key":"13_CR13","doi-asserted-by":"crossref","unstructured":"Li, J., Xu, C., Chen, Z., Bian, S., Yang, L., Lu, C.: Hybrik: a hybrid analytical-neural inverse kinematics solution for 3d human pose and shape estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3383\u20133393, June 2021","DOI":"10.1109\/CVPR46437.2021.00339"},{"key":"13_CR14","doi-asserted-by":"crossref","unstructured":"Li, S., Ke, L., Pratama, K., Tai, Y.W., Tang, C.K., Cheng, K.T.: Cascaded deep monocular 3D human pose estimation with evolutionary training data. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6173\u20136183, June 2020","DOI":"10.1109\/CVPR42600.2020.00621"},{"key":"13_CR15","doi-asserted-by":"publisher","unstructured":"Liu, J., et al.: Feature Boosting Network For 3D Pose Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 494\u2013501 (2020). https:\/\/doi.org\/10.1109\/TPAMI.2019.2894422, https:\/\/ieeexplore.ieee.org\/document\/8621059\/","DOI":"10.1109\/TPAMI.2019.2894422"},{"key":"13_CR16","doi-asserted-by":"crossref","unstructured":"Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2640\u20132649, October 2017","DOI":"10.1109\/ICCV.2017.288"},{"key":"13_CR17","doi-asserted-by":"crossref","unstructured":"Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), Venice, Italy. pp. 2659\u20132668 (Oct2017)","DOI":"10.1109\/ICCV.2017.288"},{"key":"13_CR18","unstructured":"Newell, A., Huang, Z., Deng, J.: Associative embedding: End-to-end learning for joint detection and grouping. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017). https:\/\/proceedings.neurips.cc\/paper\/2017\/file\/8edd72158ccd2a879f79cb2538568fdc-Paper.pdf"},{"key":"13_CR19","doi-asserted-by":"crossref","unstructured":"Papandreou, G., Zhu, T., Kanazawa, N., Toshev, A., Tompson, J., Bregler, C., Murphy, K.: Towards accurate multi-person pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4903\u20134911, July 2017","DOI":"10.1109\/CVPR.2017.395"},{"key":"13_CR20","doi-asserted-by":"crossref","unstructured":"Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3d human pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 7025\u20137034, July 2017","DOI":"10.1109\/CVPR.2017.139"},{"key":"13_CR21","doi-asserted-by":"crossref","unstructured":"Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 7753\u20137762, June 2019","DOI":"10.1109\/CVPR.2019.00794"},{"key":"13_CR22","doi-asserted-by":"publisher","unstructured":"Sengupta, A., Budvytis, I., Cipolla, R.: Hierarchical kinematic probability distributions for 3d human shape and pose estimation from images in the wild. In: 2021 IEEE\/CVF International Conference on Computer Vision (ICCV). pp. 11199\u201311209. IEEE, Montreal, QC, Canada, October 2021. https:\/\/doi.org\/10.1109\/ICCV48922.2021.01103, https:\/\/ieeexplore.ieee.org\/document\/9709969\/","DOI":"10.1109\/ICCV48922.2021.01103"},{"key":"13_CR23","doi-asserted-by":"crossref","unstructured":"Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5693\u20135703, June 2019","DOI":"10.1109\/CVPR.2019.00584"},{"key":"13_CR24","doi-asserted-by":"crossref","unstructured":"Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 5693\u20135703, June 2019","DOI":"10.1109\/CVPR.2019.00584"},{"key":"13_CR25","doi-asserted-by":"crossref","unstructured":"Sun, X., Shang, J., Liang, S., Wei, Y.: Compositional human pose regression. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2602\u20132611, October 2017","DOI":"10.1109\/ICCV.2017.284"},{"key":"13_CR26","doi-asserted-by":"crossref","unstructured":"Toshev, A., Szegedy, C.: Deeppose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1653\u20131660, June 2014","DOI":"10.1109\/CVPR.2014.214"},{"key":"13_CR27","doi-asserted-by":"crossref","unstructured":"Wandt, B., Rosenhahn, B.: RepNet: weakly supervised training of an adversarial reprojection network for 3D human pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7782\u20137791, June 2019","DOI":"10.1109\/CVPR.2019.00797"},{"issue":"10","key":"13_CR28","doi-asserted-by":"publisher","first-page":"3349","DOI":"10.1109\/TPAMI.2020.2983686","volume":"43","author":"J Wang","year":"2021","unstructured":"Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349\u20133364 (2021). https:\/\/doi.org\/10.1109\/TPAMI.2020.2983686","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"13_CR29","doi-asserted-by":"crossref","unstructured":"Wu, H., Xiao, B.: 3D human pose estimation via explicit compositional depth maps. In: Proceedings of AAAI Conference on Artificial Intelligence New York, NY, USA, 7\u201312 February 2020, pp. 12378\u201312385, Feb 2020","DOI":"10.1609\/aaai.v34i07.6923"},{"key":"13_CR30","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"472","DOI":"10.1007\/978-3-030-01231-1_29","volume-title":"Computer Vision \u2013 ECCV 2018","author":"B Xiao","year":"2018","unstructured":"Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472\u2013487. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01231-1_29"},{"key":"13_CR31","doi-asserted-by":"crossref","unstructured":"Yang, W., Ouyang, W., Wang, X., Ren, J.S.J., Li, H., Wang, X.: 3D human pose estimation in the wild by adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA. pp. 5255\u20135264, June 2018","DOI":"10.1109\/CVPR.2018.00551"},{"key":"13_CR32","doi-asserted-by":"crossref","unstructured":"Ye, Q., Kim, T.K.: Occlusion-aware hand pose estimation using hierarchical mixture density network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801\u2013817, September 2018","DOI":"10.1007\/978-3-030-01249-6_49"},{"key":"13_CR33","doi-asserted-by":"publisher","unstructured":"Zhang, J., Wang, Y., Zhou, Z., Luan, T., Wang, Z., Qiao, Y.: Learning dynamical human-joint affinity for 3d pose estimation in videos. IEEE Trans. Image Process. 30, 7914\u20137925 (2021). https:\/\/doi.org\/10.1109\/TIP.2021.3109517, https:\/\/ieeexplore.ieee.org\/document\/9531423\/","DOI":"10.1109\/TIP.2021.3109517"}],"container-title":["Communications in Computer and Information Science","Data Mining and Big Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-19-9297-1_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,19]],"date-time":"2023-01-19T06:32:22Z","timestamp":1674109942000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-19-9297-1_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9789811992964","9789811992971"],"references-count":33,"URL":"https:\/\/doi.org\/10.1007\/978-981-19-9297-1_13","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"20 January 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DMBD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Data Mining and Big Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Beijing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dmbd2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"135","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"62","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"46% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.8","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2-3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}