{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T23:49:42Z","timestamp":1726184982262},"publisher-location":"Singapore","reference-count":38,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789811992964"},{"type":"electronic","value":"9789811992971"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-981-19-9297-1_12","type":"book-chapter","created":{"date-parts":[[2023,1,19]],"date-time":"2023-01-19T10:33:02Z","timestamp":1674124382000},"page":"152-164","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Emotion Recognition Based on\u00a0Multi-scale Convolutional Neural Network"],"prefix":"10.1007","author":[{"given":"Zeen","family":"Wang","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,20]]},"reference":[{"key":"12_CR1","doi-asserted-by":"crossref","unstructured":"Alarc\u00e3o, S., Fonseca, M.J.: Emotions recognition using EEG signals: a survey. Affective Computing, IEEE Trans. Affct. Comput. 10, 374\u2013393 (2017)","DOI":"10.1109\/TAFFC.2017.2714671"},{"key":"12_CR2","doi-asserted-by":"crossref","unstructured":"Alhagry, S., Aly, A., Reda, A.: Emotion recognition based on EEG using LSTM recurrent neural network. Int. J. Adv. Comput. Sci. Appl. 8(10) (2017)","DOI":"10.14569\/IJACSA.2017.081046"},{"key":"12_CR3","doi-asserted-by":"crossref","unstructured":"Appriou, A., Cichocki, A., Lotte, F.: Modern machine learning algorithms to classify cognitive and affective states from electroencephalography signals. IEEE Syst. Man Cybern. Mag. 6(3), 29\u201338 (2020)","DOI":"10.1109\/MSMC.2020.2968638"},{"key":"12_CR4","doi-asserted-by":"crossref","unstructured":"Bahari, F., Janghorbani, A.: EEG-based emotion recognition using recurrence plot analysis and k nearest neighbor classifier. In: 2013 20th Iranian Conference on Biomedical Engineering (ICBME), pp. 228\u2013233. IEEE (2013)","DOI":"10.1109\/ICBME.2013.6782224"},{"key":"12_CR5","doi-asserted-by":"crossref","unstructured":"Christian, M., Brendan, A., Anton, N., Guillaume, C.: A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges: Brain-Comput. Interfaces 1(2), 66\u201384 (2014)","DOI":"10.1080\/2326263X.2014.912881"},{"key":"12_CR6","doi-asserted-by":"crossref","unstructured":"Ding, Y., Robinson, N., Zhang, S., Zeng, Q., Guan, C.: Tsception: capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition. arXiv preprint arXiv:2104.02935 (2021)","DOI":"10.1109\/TAFFC.2022.3169001"},{"issue":"5596","key":"12_CR7","doi-asserted-by":"publisher","first-page":"1191","DOI":"10.1126\/science.1076358","volume":"298","author":"RJ Dolan","year":"2002","unstructured":"Dolan, R.J.: Emotion, cognition, and behavior. Science 298(5596), 1191\u20131194 (2002)","journal-title":"Science"},{"key":"12_CR8","doi-asserted-by":"crossref","unstructured":"Jia, Z., Lin, Y., Cai, X., Chen, H., Gou, H., Wang, J.: SST-emotionnet: spatial-spectral-temporal based attention 3d dense network for EEG emotion recognition. In: MM \u201920: The 28th ACM International Conference on Multimedia (2020)","DOI":"10.1145\/3394171.3413724"},{"key":"12_CR9","doi-asserted-by":"crossref","unstructured":"Jia, Z., et al.: Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification. In: International Conference of the IEEE Engineering in Medicine and Biology Society (2021)","DOI":"10.1109\/TNSRE.2021.3110665"},{"issue":"4","key":"12_CR10","doi-asserted-by":"publisher","first-page":"3464","DOI":"10.1109\/JSEN.2022.3140383","volume":"22","author":"Z Jia","year":"2022","unstructured":"Jia, Z., Cai, X., Jiao, Z.: Multi-modal physiological signals based squeeze-and-excitation network with domain adversarial learning for sleep staging. IEEE Sens. J. 22(4), 3464\u20133471 (2022)","journal-title":"IEEE Sens. J."},{"issue":"4","key":"12_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s11432-021-3380-1","volume":"65","author":"Z Jia","year":"2022","unstructured":"Jia, Z., Ji, J., Zhou, X., Zhou, Y.: Hybrid spiking neural network for sleep electroencephalogram signals. Sci. China Inf. Sci. 65(4), 1\u201310 (2022)","journal-title":"Sci. China Inf. Sci."},{"key":"12_CR12","doi-asserted-by":"crossref","unstructured":"Jia, Z., Lin, Y., Wang, J., Feng, Z., Xie, X., Chen, C.: Hetemotionnet: two-stream heterogeneous graph recurrent neural network for multi-modal emotion recognition. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1047\u20131056 (2021)","DOI":"10.1145\/3474085.3475583"},{"key":"12_CR13","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"736","DOI":"10.1007\/978-3-030-67664-3_44","volume-title":"Machine Learning and Knowledge Discovery in Databases","author":"Z Jia","year":"2021","unstructured":"Jia, Z., Lin, Y., Wang, J., Yang, K., Liu, T., Zhang, X.: MMCNN: a multi-branch multi-scale convolutional neural network for motor imagery classification. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12459, pp. 736\u2013751. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-67664-3_44"},{"key":"12_CR14","doi-asserted-by":"crossref","unstructured":"Koelstra, S.: Deap: A database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3, 18\u201331 (2012)","DOI":"10.1109\/T-AFFC.2011.15"},{"key":"12_CR15","doi-asserted-by":"crossref","unstructured":"Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EegNet: a compact convolutional network for eeg-based brain-computer interfaces. J. Neural Eng. 15(5), 056013.1-056013.17 (2018)","DOI":"10.1088\/1741-2552\/aace8c"},{"issue":"2","key":"12_CR16","doi-asserted-by":"publisher","first-page":"368","DOI":"10.1007\/s12559-017-9533-x","volume":"10","author":"J Li","year":"2018","unstructured":"Li, J., Zhang, Z., He, H.: Hierarchical convolutional neural networks for EEG-based emotion recognition. Cogn. Comput. 10(2), 368\u2013380 (2018)","journal-title":"Cogn. Comput."},{"key":"12_CR17","unstructured":"Liu, W., Qiu, J.L., Zheng, W.L., Lu, B.L.: Multimodal emotion recognition using deep canonical correlation analysis. arXiv preprint arXiv:1908.05349 (2019)"},{"key":"12_CR18","doi-asserted-by":"crossref","unstructured":"Ma, J., Tang, H., Zheng, W., Lu, B.: Emotion recognition using multimodal residual LSTM network. In: the 27th ACM International Conference (2019)","DOI":"10.1145\/3343031.3350871"},{"issue":"1","key":"12_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s12559-020-09773-x","volume":"13","author":"M Mahmud","year":"2021","unstructured":"Mahmud, M., Kaiser, M.S., McGinnity, T.M., Hussain, A.: Deep learning in mining biological data. Cogn. Comput. 13(1), 1\u201333 (2021)","journal-title":"Cogn. Comput."},{"key":"12_CR20","doi-asserted-by":"crossref","unstructured":"Mane, R., Robinson, N., Vinod, A., Lee, S., Guan, C.: A multi-view CNN with novel variance layer for motor imagery brain computer interface. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2020, pp. 2950\u20132953 (2020)","DOI":"10.1109\/EMBC44109.2020.9175874"},{"key":"12_CR21","doi-asserted-by":"crossref","unstructured":"Mei, H., Xu, X.: EEG-based emotion classification using convolutional neural network. In: 2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), pp. 130\u2013135. IEEE (2017)","DOI":"10.1109\/SPAC.2017.8304263"},{"key":"12_CR22","doi-asserted-by":"crossref","unstructured":"Min-Ki, K., Miyoung, K., Eunmi, O., Sung-Phil, K.: A review on the computational methods for emotional state estimation from the human EEG. Comput. Math. Methods Med. 2013, 573734 (2013)","DOI":"10.1155\/2013\/573734"},{"key":"12_CR23","doi-asserted-by":"crossref","unstructured":"Nijboer, F., Morin, F.O., Carmien, S.P., Koene, R.A., Leon, E., Hoffmann, U.: Affective brain-computer interfaces: psychophysiological markers of emotion in healthy persons and in persons with amyotrophic lateral sclerosis. In: 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, pp. 1\u201311. IEEE (2009)","DOI":"10.1109\/ACII.2009.5349479"},{"key":"12_CR24","doi-asserted-by":"crossref","unstructured":"Qiu, J.L., Li, X.Y., Hu, K.: Correlated attention networks for multimodal emotion recognition. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2656\u20132660. IEEE (2018)","DOI":"10.1109\/BIBM.2018.8621129"},{"key":"12_CR25","doi-asserted-by":"crossref","unstructured":"Robinson, N., Lee, S.W., Guan, C.: EEG representation in deep convolutional neural networks for classification of motor imagery. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 1322\u20131326. IEEE (2019)","DOI":"10.1109\/SMC.2019.8914184"},{"key":"12_CR26","doi-asserted-by":"crossref","unstructured":"Salama, E.S., El-Khoribi, R.A., Shoman, M.E., Shalaby, M.A.W.: EEG-based emotion recognition using 3d convolutional neural networks. Int. J. Adv. Comput. Sci. Appl. 9(8) (2018)","DOI":"10.14569\/IJACSA.2018.090843"},{"issue":"11","key":"12_CR27","doi-asserted-by":"publisher","first-page":"5391","DOI":"10.1002\/hbm.23730","volume":"38","author":"RI Schirrmeister","year":"2017","unstructured":"Schirrmeister, R.I., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391\u20135420 (2017)","journal-title":"Hum. Brain Mapp."},{"issue":"3","key":"12_CR28","doi-asserted-by":"publisher","first-page":"532","DOI":"10.1109\/TAFFC.2018.2817622","volume":"11","author":"T Song","year":"2018","unstructured":"Song, T., Zheng, W., Song, P., Cui, Z.: EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. 11(3), 532\u2013541 (2018)","journal-title":"IEEE Trans. Affect. Comput."},{"key":"12_CR29","doi-asserted-by":"crossref","unstructured":"Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20139 (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"12_CR30","doi-asserted-by":"publisher","first-page":"734","DOI":"10.1007\/978-3-642-24955-6_87","volume":"7062","author":"X Wang","year":"2011","unstructured":"Wang, X., Nie, D., Lu, B.: EEG-based emotion recognition using frequency domain features and support vector machines. Lect. Notes Comput. Sci. 7062, 734\u2013743 (2011)","journal-title":"Lect. Notes Comput. Sci."},{"key":"12_CR31","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2022.106002","volume":"149","author":"Y Wu","year":"2022","unstructured":"Wu, Y., Xia, M., Nie, L., Zhang, Y., Fan, A.: Simultaneously exploring multi-scale and asymmetric EEG features for emotion recognition. Comput. Biol. Med. 149, 106002 (2022)","journal-title":"Comput. Biol. Med."},{"key":"12_CR32","doi-asserted-by":"crossref","unstructured":"Yang, Y., Wu, Q., Ming, Q., Wang, Y., Chen, X.: Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network. In: 2018 International Joint Conference on Neural Networks (IJCNN) (2018)","DOI":"10.1109\/IJCNN.2018.8489331"},{"issue":"2","key":"12_CR33","doi-asserted-by":"publisher","first-page":"408","DOI":"10.1109\/TCDS.2017.2685338","volume":"10","author":"Y Yang","year":"2017","unstructured":"Yang, Y., Wu, Q.J., Zheng, W.L., Lu, B.L.: EEG-based emotion recognition using hierarchical network with subnetwork nodes. IEEE Trans. Cogn. Dev. Syst. 10(2), 408\u2013419 (2017)","journal-title":"IEEE Trans. Cogn. Dev. Syst."},{"key":"12_CR34","doi-asserted-by":"crossref","unstructured":"Yea-Hoon, K., Sae-Byuk, S., Shin-Dug, K.: Electroencephalography based fusion two-dimensional (2D)-convolution neural networks (CNN) model for emotion recognition system. Sensors 18(5), 1383\u2013 (2018)","DOI":"10.3390\/s18051383"},{"key":"12_CR35","doi-asserted-by":"crossref","unstructured":"Zhang, T., Zheng, W., Cui, Z., Zong, Y.: Spatial-temporal recurrent neural network for emotion recognition. IEEE Trans. Cybern. 49, 839\u2013 847 (2019)","DOI":"10.1109\/TCYB.2017.2788081"},{"key":"12_CR36","doi-asserted-by":"crossref","unstructured":"Zhang, T., Cui, Z., Xu, C., Zheng, W., Yang, J.: Variational pathway reasoning for EEG emotion recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 2709\u20132716 (2020)","DOI":"10.1609\/aaai.v34i03.5657"},{"key":"12_CR37","doi-asserted-by":"crossref","unstructured":"Zhao, Y., Yang, J., Lin, J., Yu, D., Cao, X.: A 3D convolutional neural network for emotion recognition based on EEG signals. In: 2020 International Joint Conference on Neural Networks (IJCNN) (2020)","DOI":"10.1109\/IJCNN48605.2020.9207420"},{"key":"12_CR38","doi-asserted-by":"crossref","unstructured":"Zheng, W.L., Zhu, J.Y., Peng, Y., Lu, B.L.: EEG-based emotion classification using deep belief networks. In: 2014 IEEE International Conference on Multimedia and Expo (ICME), pp. 1\u20136. IEEE (2014)","DOI":"10.1109\/ICME.2014.6890166"}],"container-title":["Communications in Computer and Information Science","Data Mining and Big Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-19-9297-1_12","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,19]],"date-time":"2023-01-19T11:32:50Z","timestamp":1674127970000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-19-9297-1_12"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9789811992964","9789811992971"],"references-count":38,"URL":"https:\/\/doi.org\/10.1007\/978-981-19-9297-1_12","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"20 January 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DMBD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Data Mining and Big Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Beijing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dmbd2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"135","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"62","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"46% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.8","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2-3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}