{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:09:18Z","timestamp":1742911758441,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":16,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789811982842"},{"type":"electronic","value":"9789811982859"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,12,10]],"date-time":"2022-12-10T00:00:00Z","timestamp":1670630400000},"content-version":"vor","delay-in-days":343,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"abstract":"Abstract<\/jats:title>The Application Program Interface (API) plays an important role as the channel for data interaction between programs, while the widespread use of APIs has brought security risks that cannot be ignored. The adversary can perform various Web attacks, including SQL Injection and Cross-Site Scripting (XSS), by tampering with the parameters of API. Efficient detection of parameter tampering attacks for API is critical to ensure the system is running in the expected condition, further avoiding data leakage and property loss. Previous works always utilize the rule-based method or simple learning-based method to detect parameter tampering attacks. However, they ignore the contextual information of the API tokens and thus have a poor performance. In this paper, we propose the C<\/jats:bold>ontext-based M<\/jats:bold>alicious P<\/jats:bold>arameter D<\/jats:bold>etection (CMPD) framework to detect the parameter tampering attacks for APIs. We use a neural network language model to learn the distribution of the parameters, parameter names, and URLs and then use a tree model to detect the malicious query based on the high dimensional API embedding. Experiments show that CMPD outperforms all baseline, including rule-based method, Support Vector Machine (SVM), and Autoencoder, on CSIC 2010 dataset with $$F_1$$<\/jats:tex-math>\n \n F<\/mml:mi>\n 1<\/mml:mn>\n <\/mml:msub>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> value reaching 0.971. CMPD can also achieve a 0.895 $$F_1$$<\/jats:tex-math>\n \n F<\/mml:mi>\n 1<\/mml:mn>\n <\/mml:msub>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> value when training data is reduced to 20% and can achieve a 0.910 $$F_1$$<\/jats:tex-math>\n \n F<\/mml:mi>\n 1<\/mml:mn>\n <\/mml:msub>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> value when negative examples are reduced to 1%.<\/jats:p>","DOI":"10.1007\/978-981-19-8285-9_7","type":"book-chapter","created":{"date-parts":[[2022,12,9]],"date-time":"2022-12-09T20:02:48Z","timestamp":1670616168000},"page":"99-112","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["CMPD: Context-Based Malicious Parameter Detection for APIs"],"prefix":"10.1007","author":[{"given":"Zhangjie","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Lin","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xing","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Ying","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yi","family":"Qin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,12,10]]},"reference":[{"issue":"1","key":"7_CR1","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1007\/s12652-019-01235-z","volume":"11","author":"MS Aliero","year":"2019","unstructured":"Aliero, M.S., Ghani, I., Qureshi, K.N., Rohani, M.F.: An algorithm for detecting SQL injection vulnerability using black-box testing. J. Ambient Intell. Human. Comput. 11(1), 249\u2013266 (2019). https:\/\/doi.org\/10.1007\/s12652-019-01235-z","journal-title":"J. Ambient Intell. Human. Comput."},{"key":"7_CR2","unstructured":"Atlidakis, V., Godefroid, P., Polishchuk, M.: Rest-ler: automatic intelligent REST API fuzzing. CoRR abs\/1806.09739 (2018)"},{"issue":"1","key":"7_CR3","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1007\/s10207-016-0359-4","volume":"17","author":"G Deepa","year":"2017","unstructured":"Deepa, G., Thilagam, P.S., Khan, F.A., Praseed, A., Pais, A.R., Palsetia, N.: Black-box detection of XQuery injection and parameter tampering vulnerabilities in web applications. Int. J. Inform. Secur. 17(1), 105\u2013120 (2017). https:\/\/doi.org\/10.1007\/s10207-016-0359-4","journal-title":"Int. J. Inform. Secur."},{"key":"7_CR4","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1016\/j.jnca.2018.01.008","volume":"109","author":"G Deepa","year":"2018","unstructured":"Deepa, G., Thilagam, P.S., Praseed, A., Pais, A.R.: Detlogic: a black-box approach for detecting logic vulnerabilities in web applications. J. Network Comput. Appl. 109, 89\u2013109 (2018). https:\/\/doi.org\/10.1016\/j.jnca.2018.01.008","journal-title":"J. Network Comput. Appl."},{"key":"7_CR5","doi-asserted-by":"publisher","unstructured":"Ed-Douibi, H., Izquierdo, J.L.C., Cabot, J.: Automatic generation of test cases for REST APIS: a specification-based approach. In: 22nd IEEE International Enterprise Distributed Object Computing Conference, EDOC 2018, 16\u201319 Oct 2018, pp. 181\u2013190. Stockholm, Sweden. IEEE Computer Society (2018). https:\/\/doi.org\/10.1109\/EDOC.2018.00031","DOI":"10.1109\/EDOC.2018.00031"},{"key":"7_CR6","doi-asserted-by":"publisher","unstructured":"Ingham, K.L., Inoue, H.: Comparing anomaly detection techniques for HTTP. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 42\u201362. Springer, Heidelberg (2007). https:\/\/doi.org\/10.1007\/978-3-540-74320-0_3","DOI":"10.1007\/978-3-540-74320-0_3"},{"key":"7_CR7","doi-asserted-by":"publisher","unstructured":"Liang, J., Zhao, W., Ye, W.: Anomaly-based web attack detection: a deep learning approach. In: Proceedings of the VI International Conference on Network, Communication and Computingm, ICNCC 2017, 8\u201310 Dec 2017, pp. 80\u201385. ACM, Kunming, China (2017). https:\/\/doi.org\/10.1145\/3171592.3171594","DOI":"10.1145\/3171592.3171594"},{"key":"7_CR8","doi-asserted-by":"publisher","unstructured":"Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect malicious web sites from suspicious urls. In: IV, J.F.E., Fogelman-Souli\u00e9, F., Flach, P.A., Zaki, M.J. (eds.) Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 28\u2013July 1, 2009, pp. 1245\u20131254. ACM, Paris, France (2009). https:\/\/doi.org\/10.1145\/1557019.1557153","DOI":"10.1145\/1557019.1557153"},{"key":"7_CR9","doi-asserted-by":"publisher","unstructured":"Mac, H., Truong, D., Nguyen, L., Nguyen, H., Tran, H.A., Tran, D.: Detecting attacks on web applications using autoencoder. In: Proceedings of the Ninth International Symposium on Information and Communication Technology, SoICT 2018, 06\u201307 Dec 2018. pp. 416\u2013421. ACM, Danang City, Vietnam (2018). https:\/\/doi.org\/10.1145\/3287921.3287946","DOI":"10.1145\/3287921.3287946"},{"key":"7_CR10","doi-asserted-by":"publisher","unstructured":"Nguyen, H.T., Torrano-Gimenez, C., Alvarez, G., Petrovi\u0107, S., Franke, K.: Application of the generic feature selection measure in detection of web attacks. In: Herrero, \u00c1., Corchado, E. (eds.) CISIS 2011. LNCS, vol. 6694, pp. 25\u201332. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-21323-6_4","DOI":"10.1007\/978-3-642-21323-6_4"},{"key":"7_CR11","doi-asserted-by":"publisher","unstructured":"Rieck, K., Laskov, P.: Detecting unknown network attacks using language models. In: B\u00fcschkes, R., Laskov, P. (eds.) DIMVA 2006. LNCS, vol. 4064, pp. 74\u201390. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/11790754_5","DOI":"10.1007\/11790754_5"},{"key":"7_CR12","doi-asserted-by":"crossref","unstructured":"Sudhodanan, A., Armando, A., Carbone, R., Compagna, L.: Attack patterns for black-box security testing of multi-party web applications. In: 23rd Annual Network and Distributed System Security Symposium, NDSS 2016, 21\u201324 Feb 2016. The Internet Society, San Diego, California, USA (2016). http:\/\/wp.internetsociety.org\/ndss\/wp-content\/uploads\/sites\/25\/2017\/09\/attack-patterns-black-box-security-testing-multi-party-web-applications.pdf","DOI":"10.14722\/ndss.2016.23286"},{"key":"7_CR13","doi-asserted-by":"crossref","unstructured":"Vartouni, A.M., Kashi, S.S., Teshnehlab, M.: An anomaly detection method to detect web attacks using stacked auto-encoder. In: 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), pp. 131\u2013134 (2018)","DOI":"10.1109\/CFIS.2018.8336654"},{"key":"7_CR14","doi-asserted-by":"publisher","unstructured":"Viglianisi, E., Dallago, M., Ceccato, M.: RESTTESTGEN: automated black-box testing of restful apis. In: 13th IEEE International Conference on Software Testing, Validation and Verification, ICST 2020, 24\u201328 Oct 2020, pp. 142\u2013152. IEEE, Porto, Portugal (2020). https:\/\/doi.org\/10.1109\/ICST46399.2020.00024","DOI":"10.1109\/ICST46399.2020.00024"},{"key":"7_CR15","doi-asserted-by":"crossref","unstructured":"Wang, J., Zhou, Z., Chen, J.: Evaluating CNN and LSTM for web attack detection. In: Proceedings of the 10th International Conference on Machine Learning and Computing, ICMLC 2018, 26\u201328 Feb 2018, pp. 283\u2013287. ACM, Macau, China (2018). https:\/\/dl.acm.org\/citation.cfm?id=3195107","DOI":"10.1145\/3195106.3195107"},{"key":"7_CR16","unstructured":"Yu, H.: A Study of Key Techniques for Fuzz Testing of Restful API Interfaces, pp. 1\u201372. Southeastern University (2019)"}],"container-title":["Communications in Computer and Information Science","Cyber Security"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-19-8285-9_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,24]],"date-time":"2022-12-24T00:03:10Z","timestamp":1671840190000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-19-8285-9_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9789811982842","9789811982859"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-981-19-8285-9_7","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"10 December 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CNCERT","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China Cyber Security Annual Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Beijing","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 August 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 August 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cncert2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/conf.cert.org.cn","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}