{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T17:27:02Z","timestamp":1726162022338},"publisher-location":"Singapore","reference-count":20,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789811903601"},{"type":"electronic","value":"9789811903618"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-981-19-0361-8_12","type":"book-chapter","created":{"date-parts":[[2022,5,3]],"date-time":"2022-05-03T14:02:58Z","timestamp":1651586578000},"page":"193-205","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Lunch-Box Preparation Activity Understanding from\u00a0Motion Capture Data Using Handcrafted Features"],"prefix":"10.1007","author":[{"given":"Yeasin Arafat","family":"Pritom","sequence":"first","affiliation":[]},{"given":"Md. Sohanur","family":"Rahman","sequence":"additional","affiliation":[]},{"given":"Hasib Ryan","family":"Rahman","sequence":"additional","affiliation":[]},{"given":"M. Ashikuzzaman","family":"Kowshik","sequence":"additional","affiliation":[]},{"given":"Md Atiqur Rahman","family":"Ahad","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,5,4]]},"reference":[{"key":"12_CR1","unstructured":"Mahmud, S., Tonmoy, M., Bhaumik, K.K., Rahman, A.K.M., Ashraful Amin, M., Shoyaib, M., Khan, M.A.H., Ali, A.A.: Human Activity Recognition from Wearable Sensor Data Using Self-attention. arXiv preprint arXiv:2003.09018 (2020)"},{"key":"12_CR2","doi-asserted-by":"crossref","unstructured":"Su, B., Wu, H., Sheng, M.: Human action recognition method based on hierarchical framework via Kinect skeleton data. In: 2017 International Conference on Machine Learning and Cybernetics (ICMLC), vol. 1. IEEE (2017)","DOI":"10.1109\/ICMLC.2017.8107747"},{"key":"12_CR3","doi-asserted-by":"crossref","unstructured":"Abir, F.F., Faisal, M.A.A., Shahid, O., Ahmed, M.U.: Contactless human activity analysis: an overview of different modalities. In: Ahad, M.A.R., Mahbub, U., Rahman, T. (eds.) Contactless Human Activity Analysis. Intelligent Systems Reference Library, vol. 200. Springer, Cham (2021)","DOI":"10.1007\/978-3-030-68590-4_3"},{"key":"12_CR4","doi-asserted-by":"crossref","unstructured":"De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-based datasets for human activity recognition\u2014a systematic review of literature. IEEE Access 6, 59192\u201359210 (2018)","DOI":"10.1109\/ACCESS.2018.2873502"},{"key":"12_CR5","doi-asserted-by":"crossref","unstructured":"Masum, A.K.M., Bahadur, E.H., Shan-A-Alahi, A., Chowdhury, M.A.U.Z., Uddin, M.R., Noman, A.A.: Human activity recognition using accelerometer, gyroscope and magnetometer sensors: deep neural network approaches. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), IEEE (2019)","DOI":"10.1109\/ICCCNT45670.2019.8944512"},{"key":"12_CR6","doi-asserted-by":"crossref","unstructured":"Demrozi, F., Pravadelli, G., Bihorac, A., Rashidi, P.: Human activity recognition using inertial, physiological and environmental sensors: a comprehensive survey. IEEE Access (2020)","DOI":"10.1109\/ACCESS.2020.3037715"},{"key":"12_CR7","doi-asserted-by":"crossref","unstructured":"Miura, T., Kaiga, T., Shibata, T., Tajima, K., Tamamoto, H.: Low-dimensional feature vector extraction from motion capture data by phase plane analysis. J. Information Process. 25, 884\u2013887 (2017)","DOI":"10.2197\/ipsjjip.25.884"},{"key":"12_CR8","doi-asserted-by":"crossref","unstructured":"Hossain, T., Sarker, S., Rahman, S., Ahad, M.A.R.: Skeleton-based human action recognition on large-scale datasets. In: Vision, Sensing and Analytics: Integrative Approaches, Springer Nature Switzerland AG, pp. 125\u2013146 (2021)","DOI":"10.1007\/978-3-030-75490-7_5"},{"key":"12_CR9","doi-asserted-by":"crossref","unstructured":"Sarker, S., Rahman, S., Hossain, T., Ahmed, S.F., Jamal, L., Ahad, M.A.R.: Skeleton-based activity recognition: preprocessing and approaches. In: Contactless Human Activity Analysis, Springer Nature Switzerland AG, pp. 43\u201382 (2021)","DOI":"10.1007\/978-3-030-68590-4_2"},{"key":"12_CR10","doi-asserted-by":"crossref","unstructured":"Cao, X., Kudo, W., Ito, C., Shuzo, M., Maeda, E.: Activity recognition using ST-GCN with 3D motion data. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers (2019)","DOI":"10.1145\/3341162.3345581"},{"key":"12_CR11","unstructured":"Lin, Z., Jiang, Z., Davis, L.S.: Recognizing actions by shape-motion prototype trees.. In: 2009 IEEE 12th International Conference on Computer Vision. IEEE (2009)"},{"key":"12_CR12","doi-asserted-by":"crossref","unstructured":"Su, B., Wu, H., Sheng, M., Shen, C.: Accurate hierarchical human actions recognition from kinect skeleton data. IEEE Access 7, 52532\u201352541 (2019)","DOI":"10.1109\/ACCESS.2019.2911705"},{"key":"12_CR13","doi-asserted-by":"crossref","unstructured":"Zhang, S., Yang, Y., Xiao, J., Liu, X., Yang, Y., Xie, D., Zhuang, Y.: Fusing geometric features for skeleton-based action recognition using multilayer LSTM networks. IEEE Trans. Multimedia 20(9), 2330\u20132343 (2018)","DOI":"10.1109\/TMM.2018.2802648"},{"key":"12_CR14","doi-asserted-by":"crossref","unstructured":"Xia, L., Chen, C.-C., Aggarwal, J.K.: View invariant human action recognition using histograms of 3d joints. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE (2012)","DOI":"10.1109\/CVPRW.2012.6239233"},{"key":"12_CR15","doi-asserted-by":"crossref","unstructured":"Chaudhry, R., Ofli, F., Kurillo, G., Bajcsy, R., Vidal, R.: Bio-inspired dynamic 3d discriminative skeletal features for human action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2013)","DOI":"10.1109\/CVPRW.2013.153"},{"key":"12_CR16","doi-asserted-by":"crossref","unstructured":"Tarek, M.H., Kadir, M.E., Mahbub, M., Akash, P.S., Ali, A.A., Shoyaib, M.: Mutual Information based feature selection for nurse care activity recognition. In: 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1\u20136. IEEE (2020)","DOI":"10.1109\/ICIEVicIVPR48672.2020.9306645"},{"key":"12_CR17","doi-asserted-by":"publisher","unstructured":"Alia, S.S., Adachi, K., Nahid, N., Kaneko, H., Lago, P., Inoue, S.: Bento Packaging Activity Recognition Challenge (2021). Available at: https:\/\/doi.org\/10.21227\/cwhs-t440","DOI":"10.21227\/cwhs-t440"},{"key":"12_CR18","doi-asserted-by":"crossref","unstructured":"Siraj, M.S., Shahid, O., Ahad, M.A.R.: Cooking activity recognition with varying sampling rates using deep convolutional GRU framework. In: Ahad M.A.R., Lago P., Inoue S. (eds.) Human Activity Recognition Challenge. Smart Innovation, Systems and Technologies, vol. 199. Springer, Singapore (2021)","DOI":"10.1007\/978-981-15-8269-1_10"},{"key":"12_CR19","doi-asserted-by":"crossref","unstructured":"Kadir, M.E., Akash, P.S., Sharmin, S., Ali, A.A., Shoyaib, M.: Can a simple approach identify complex nurse care activity? In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers (2019)","DOI":"10.1145\/3341162.3344859"},{"key":"12_CR20","doi-asserted-by":"crossref","unstructured":"Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3\u201342 (2021)","DOI":"10.1007\/s10994-006-6226-1"}],"container-title":["Smart Innovation, Systems and Technologies","Sensor- and Video-Based Activity and Behavior Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-19-0361-8_12","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,3]],"date-time":"2022-05-03T14:16:10Z","timestamp":1651587370000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-19-0361-8_12"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9789811903601","9789811903618"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-981-19-0361-8_12","relation":{},"ISSN":["2190-3018","2190-3026"],"issn-type":[{"type":"print","value":"2190-3018"},{"type":"electronic","value":"2190-3026"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"4 May 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}