{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T15:41:35Z","timestamp":1726155695178},"publisher-location":"Singapore","reference-count":17,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789811666230"},{"type":"electronic","value":"9789811666247"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-981-16-6624-7_10","type":"book-chapter","created":{"date-parts":[[2022,2,28]],"date-time":"2022-02-28T04:26:48Z","timestamp":1646022408000},"page":"91-98","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Computer-Aided Segmentation of\u00a0Polyps Using Mask R-CNN and\u00a0Approach to\u00a0Reduce False Positives"],"prefix":"10.1007","author":[{"given":"Saurabh","family":"Jha","sequence":"first","affiliation":[]},{"given":"Balaji","family":"Jagtap","sequence":"additional","affiliation":[]},{"given":"Srijan","family":"Mazumdar","sequence":"additional","affiliation":[]},{"given":"Saugata","family":"Sinha","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,2,28]]},"reference":[{"key":"10_CR1","doi-asserted-by":"publisher","unstructured":"Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clinicians (2021). https:\/\/doi.org\/10.3322\/caac.21660, https:\/\/acsjournals.onlinelibrary.wiley.com\/doi\/abs\/10.3322\/caac.21660","DOI":"10.3322\/caac.21660"},{"key":"10_CR2","unstructured":"Cancer.net webpage. https:\/\/cancer.net\/cancer-types\/colorectal-cancer\/stages. Last accessed 15 Mar 2021"},{"issue":"5","key":"10_CR3","doi-asserted-by":"publisher","first-page":"470","DOI":"10.1055\/s-0031-1291666","volume":"44","author":"A Leufkens","year":"2012","unstructured":"Leufkens, A., van Oijen, M.G.H., Vleggaar, F., Siersema, P.: Factors influencing the miss rate of polyps in a back-to-back colonoscopy study. Endoscopy 44(5), 470\u2013475 (2012). https:\/\/doi.org\/10.1055\/s-0031-1291666","journal-title":"Endoscopy"},{"key":"10_CR4","doi-asserted-by":"publisher","unstructured":"Alexandre, L.A., Nobre, N., Casteleiro, J.: Color and position versus texture features for endoscopic polyp detection. In: 2008 International Conference on BioMedical Engineering and Informatics, vol.\u00a02, pp. 38\u201342 (2008). https:\/\/doi.org\/10.1109\/BMEI.2008.246","DOI":"10.1109\/BMEI.2008.246"},{"key":"10_CR5","doi-asserted-by":"publisher","unstructured":"Bernal, J., Tajkbaksh, N., S\u00e1nchez, F.J., Matuszewski, B.J., Chen, H., Yu, L., Angermann, Q., Romain, O., Rustad, B., Balasingham, I., Pogorelov, K., Choi, S., Debard, Q., Maier-Hein, L., Speidel, S., Stoyanov, D., Brandao, P., C\u00f3rdova, H., S\u00e1nchez-Montes, C., Gurudu, S.R., Fern\u00e1ndez-Esparrach, G., Dray, X., Liang, J., Histace, A.: Comparative validation of polyp detection methods in video colonoscopy: results from the miccai 2015 endoscopic vision challenge. IEEE Trans. Med. Imaging 36(6), 1231\u20131249 (2017). https:\/\/doi.org\/10.1109\/TMI.2017.2664042","DOI":"10.1109\/TMI.2017.2664042"},{"key":"10_CR6","doi-asserted-by":"publisher","unstructured":"Iakovidis, D.K., Maroulis, D.E., Karkanis, S.A.: An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Comput. Biol. Med. 36(10), 1084\u20131103 (2006). https:\/\/doi.org\/10.1016\/j.compbiomed.2005.09.008, https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0010482505000983, Intelligent Technologies in Medicine and Bioinformatics","DOI":"10.1016\/j.compbiomed.2005.09.008"},{"issue":"2","key":"10_CR7","doi-asserted-by":"publisher","first-page":"630","DOI":"10.1109\/TMI.2015.2487997","volume":"35","author":"N Tajbakhsh","year":"2016","unstructured":"Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630\u2013644 (2016). https:\/\/doi.org\/10.1109\/TMI.2015.2487997","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10_CR8","unstructured":"Hasan, M.M., Islam, N., Rahman, M.M.: Gastrointestinal polyp detection through a fusion of contourlet transform and neural features. J. King Saud Univ.-Comput. Information Sci. (2020)"},{"key":"10_CR9","doi-asserted-by":"publisher","unstructured":"Shin, Y., Qadir, H.A., Aabakken, L., Bergsland, J., Balasingham, I.: Automatic colon polyp detection using region based deep CNN and post learning approaches. CoRR abs\/1906.11463 (2019). https:\/\/doi.org\/10.1109\/ACCESS.2018.2856402, http:\/\/arxiv.org\/abs\/1906.11463","DOI":"10.1109\/ACCESS.2018.2856402"},{"key":"10_CR10","doi-asserted-by":"publisher","unstructured":"Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Integrating online and offline 3d deep learning for automated polyp detection in colonoscopy videos. IEEE J. Biomed. Health Informatics PP. 1\u20131 (12 2016). https:\/\/doi.org\/10.1109\/JBHI.2016.2637004","DOI":"10.1109\/JBHI.2016.2637004"},{"key":"10_CR11","doi-asserted-by":"publisher","first-page":"75058","DOI":"10.1109\/ACCESS.2019.2921027","volume":"7","author":"M Liu","year":"2019","unstructured":"Liu, M., Jiang, J., Wang, Z.: Colonic polyp detection in endoscopic videos with single shot detection based deep convolutional neural network. IEEE Access 7, 75058\u201375066 (2019). https:\/\/doi.org\/10.1109\/ACCESS.2019.2921027","journal-title":"IEEE Access"},{"key":"10_CR12","unstructured":"Cvc-clinic db. https:\/\/polyp.grand-challenge.org\/CVCClinicDB\/. Last accessed 15 Jan 2021"},{"key":"10_CR13","unstructured":"Etis-larib db. \/\/polyp.grand-challenge.org\/EtisLarib\/. Last accessed 15 Jan 2021"},{"key":"10_CR14","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.B.: Mask R-CNN. CoRR abs\/1703.06870 (2017). http:\/\/arxiv.org\/abs\/1703.06870","DOI":"10.1109\/ICCV.2017.322"},{"key":"10_CR15","unstructured":"Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs\/1506.01497 (2015). http:\/\/arxiv.org\/abs\/1506.01497"},{"key":"10_CR16","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs\/1512.03385 (2015). http:\/\/arxiv.org\/abs\/1512.03385"},{"key":"10_CR17","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Doll\u00e1r, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: ECCV (2014)","DOI":"10.1007\/978-3-319-10602-1_48"}],"container-title":["Smart Innovation, Systems and Technologies","Intelligent Data Engineering and Analytics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-16-6624-7_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,5]],"date-time":"2022-05-05T17:17:10Z","timestamp":1651771030000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-16-6624-7_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9789811666230","9789811666247"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-981-16-6624-7_10","relation":{},"ISSN":["2190-3018","2190-3026"],"issn-type":[{"type":"print","value":"2190-3018"},{"type":"electronic","value":"2190-3026"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"28 February 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}