{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T06:53:05Z","timestamp":1726123985781},"publisher-location":"Singapore","reference-count":14,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811625398"},{"type":"electronic","value":"9789811625404"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-981-16-2540-4_50","type":"book-chapter","created":{"date-parts":[[2021,5,6]],"date-time":"2021-05-06T14:04:30Z","timestamp":1620309870000},"page":"670-677","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Short Text Classification Method Based on Combining Label Information and Self-attention Graph Convolutional Neural Network"],"prefix":"10.1007","author":[{"given":"Hongbin","family":"Wang","sequence":"first","affiliation":[]},{"given":"Gaorong","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Runxin","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,5,7]]},"reference":[{"key":"50_CR1","doi-asserted-by":"crossref","unstructured":"Kim, Y.: Convolutional neural networks for sentence classification. EprintArxiv (2014)","DOI":"10.3115\/v1\/D14-1181"},{"key":"50_CR2","unstructured":"Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-rent neural networks on sequence modeling. arXiv preprint arXiv (2016)"},{"key":"50_CR3","unstructured":"Henaff, M., Bruna, J., Le Cun, Y.: Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 (2015)"},{"key":"50_CR4","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"137","DOI":"10.1007\/BFb0026683","volume-title":"Machine Learning: ECML-98","author":"T Joachims","year":"1998","unstructured":"Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: N\u00e9dellec, C., Rouveirol, C. (eds.) Machine Learning: ECML-98. LNCS, vol. 1398, pp. 137\u2013142. Springer, Berlin (1998). https:\/\/doi.org\/10.1007\/BFb0026683"},{"key":"50_CR5","unstructured":"Mladenic, D., Grobelnik, M.: Feature selection for unbalanced class distribution and Naive Bayes. In: 16th International Conference on Machine Learning, Slovenia, Bled, pp. 258\u2013267 (1999)"},{"key":"50_CR6","doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532\u20131543 (2014)","DOI":"10.3115\/v1\/D14-1162"},{"key":"50_CR7","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.jbi.2017.07.006","volume":"72","author":"Y Luo","year":"2017","unstructured":"Luo, Y.: Recurrent neural networks for classifying relations in clinical notes. J. Biomed. Inform. 72, 85\u201395 (2017)","journal-title":"J. Biomed. Inform."},{"issue":"21-22","key":"50_CR8","doi-asserted-by":"publisher","first-page":"14751","DOI":"10.1007\/s11042-019-7240-1","volume":"79","author":"Y Zhang","year":"2019","unstructured":"Zhang, Y., Lu, W., Ou, W., Zhang, G., Zhang, X., Cheng, J., Zhang, W.: Chinese medical question answer selection via hybrid models based on CNN and GRU. Multimedia Tools Appl. 79(21\u201322), 14751\u201314776 (2019). https:\/\/doi.org\/10.1007\/s11042-019-7240-1","journal-title":"Multimedia Tools Appl."},{"key":"50_CR9","doi-asserted-by":"crossref","unstructured":"Yao, L., Mao C.: Graph convolutional networks for text classification. In: the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7370\u20137377 (2019)","DOI":"10.1609\/aaai.v33i01.33017370"},{"key":"50_CR10","unstructured":"Veli\u010dkovi\u0107, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)"},{"key":"50_CR11","unstructured":"Natural Language Toolkit Homepage. https:\/\/www.nltk.org\/. Accessed 14 Oct 2020"},{"key":"50_CR12","unstructured":"Wang, G., et al.: Joint em-bedding of words and labels for text classification. arXiv preprint arXiv:1805.04174 (2018)"},{"key":"50_CR13","unstructured":"Zhang, X., Zhao, J., Le Cun, Y.: Character-level convolutional networks for text classification. In Advances in Neural Information Processing Systems, pp. 649\u2013657 (2015)"},{"key":"50_CR14","doi-asserted-by":"crossref","unstructured":"Shen, D., et al.: Baseline needs more love: on simple word-embedding-based models and associated pooling mechanisms. arXiv preprint arXiv:1805.09843 (2018)","DOI":"10.18653\/v1\/P18-1041"}],"container-title":["Communications in Computer and Information Science","Computer Supported Cooperative Work and Social Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-16-2540-4_50","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,5,6]],"date-time":"2021-05-06T14:13:42Z","timestamp":1620310422000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-16-2540-4_50"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9789811625398","9789811625404"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-981-16-2540-4_50","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"7 May 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ChineseCSCW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"CCF Conference on Computer Supported Cooperative Work and Social Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"chinesecscw2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.scholat.com\/confweb\/CCSCW2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}