{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T06:53:06Z","timestamp":1726123986937},"publisher-location":"Singapore","reference-count":20,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811625398"},{"type":"electronic","value":"9789811625404"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-981-16-2540-4_48","type":"book-chapter","created":{"date-parts":[[2021,5,6]],"date-time":"2021-05-06T14:04:30Z","timestamp":1620309870000},"page":"650-660","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Image Super-Resolution Using Deformable Convolutional Network"],"prefix":"10.1007","author":[{"given":"Chang","family":"Li","sequence":"first","affiliation":[]},{"given":"Lunke","family":"Fei","sequence":"additional","affiliation":[]},{"given":"Jianyang","family":"Qin","sequence":"additional","affiliation":[]},{"given":"Dongning","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Shaohua","family":"Teng","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,5,7]]},"reference":[{"key":"48_CR1","unstructured":"Bengio, Y., Goodfellow, I.J., Courville, A.: Deep learning. https:\/\/www.deeplearningbook.org"},{"key":"48_CR2","doi-asserted-by":"publisher","unstructured":"Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with super-resolution forests. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3791\u20133799. IEEE Press, New York (2015). https:\/\/doi.org\/10.1109\/CVPR.2015.7299003","DOI":"10.1109\/CVPR.2015.7299003"},{"key":"48_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1007\/978-3-319-10593-2_13","volume-title":"Computer Vision \u2013 ECCV 2014","author":"C Dong","year":"2014","unstructured":"Dong, C., Loy, C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184\u2013199. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10593-2_13"},{"issue":"2","key":"48_CR4","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1109\/TPAMI.2015.2439281","volume":"38","author":"C Dong","year":"2015","unstructured":"Dong, C., Loy, C.C., He, K.M., Tang, X.O.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295\u2013307 (2015). https:\/\/doi.org\/10.1109\/TPAMI.2015.2439281","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"48_CR5","doi-asserted-by":"publisher","unstructured":"Huang, J.-B., Singh, A., Ahuja, N.: Single image super resolution from transformed self-exemplars. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197\u20135206. IEEE Press, New York (2015). https:\/\/doi.org\/10.1109\/CVPR.2015.7299156","DOI":"10.1109\/CVPR.2015.7299156"},{"key":"48_CR6","doi-asserted-by":"publisher","unstructured":"Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: 30th IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2790\u20132798. IEEE Press, New York (2017). https:\/\/doi.org\/10.1109\/CVPR.2017.298","DOI":"10.1109\/CVPR.2017.298"},{"key":"48_CR7","doi-asserted-by":"publisher","unstructured":"Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example based super-resolution. In: IEEE International Conference on Computer Vision, pp. 1920\u20131927. IEEE Press, New York (2013). https:\/\/doi.org\/10.1109\/ICCV.2013.241","DOI":"10.1109\/ICCV.2013.241"},{"key":"48_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1007\/978-3-319-16817-3_8","volume-title":"Computer Vision \u2013 ACCV 2014","author":"R Timofte","year":"2015","unstructured":"Timofte, R., De Smet, V., Van Gool, L.: A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111\u2013126. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-16817-3_8"},{"key":"48_CR9","doi-asserted-by":"publisher","unstructured":"Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 2861\u20132873 (2010). https:\/\/doi.org\/10.1109\/TIP.2010.2050625","DOI":"10.1109\/TIP.2010.2050625"},{"key":"48_CR10","doi-asserted-by":"publisher","unstructured":"Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: IEEE International Conference on Computer Vision, pp. 2380\u20137504. IEEE Press, New York (2017). https:\/\/doi.org\/10.1109\/ICCV.2017.89","DOI":"10.1109\/ICCV.2017.89"},{"key":"48_CR11","doi-asserted-by":"publisher","unstructured":"Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1063\u20136919. IEEE Press, New York (2016). https:\/\/doi.org\/10.1109\/CVPR.2016.182","DOI":"10.1109\/CVPR.2016.182"},{"key":"48_CR12","doi-asserted-by":"publisher","unstructured":"Shi, W.Z., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874\u20131883. IEEE Press, New York (2016). https:\/\/doi.org\/10.1109\/CVPR.2016.207","DOI":"10.1109\/CVPR.2016.207"},{"key":"48_CR13","doi-asserted-by":"publisher","unstructured":"Bevilacqua, M., Roumy, A., Guillemot, C., AlberiMore, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: 23rd British Machine Vision Conference. BMVA Press, Guildford (2012). https:\/\/doi.org\/10.5244\/C.26.135","DOI":"10.5244\/C.26.135"},{"key":"48_CR14","doi-asserted-by":"publisher","unstructured":"Fei, L., Zhang, B., Zhang, L., Jia, W., Wen, Jie, Wu, J.: Learning compact multifeature codes for palmprint recognition from a single training image per palm. IEEE Trans. Multimedia, 1\u201313 (2020). https:\/\/doi.org\/10.1109\/TMM.2020.3019701","DOI":"10.1109\/TMM.2020.3019701"},{"key":"48_CR15","doi-asserted-by":"publisher","unstructured":"Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: 8th IEEE International Conference on Computer Vision, pp. 416\u2013423. IEEE Press, Los Alamitos (2001). https:\/\/doi.org\/10.1109\/iccv.2001.937655","DOI":"10.1109\/iccv.2001.937655"},{"key":"48_CR16","doi-asserted-by":"publisher","unstructured":"Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Images Process. 13, 600\u2013612 (2004). https:\/\/doi.org\/10.1109\/TIP.2003.819861","DOI":"10.1109\/TIP.2003.819861"},{"key":"48_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"711","DOI":"10.1007\/978-3-642-27413-8_47","volume-title":"Curves and Surfaces","author":"R Zeyde","year":"2012","unstructured":"Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711\u2013730. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-27413-8_47"},{"key":"48_CR18","doi-asserted-by":"publisher","unstructured":"Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637\u20131645. IEEE Press, New York (2016). https:\/\/doi.org\/10.1109\/CVPR.2016.181","DOI":"10.1109\/CVPR.2016.181"},{"key":"48_CR19","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1109\/72.279181","volume":"5","author":"Y Bengio","year":"1994","unstructured":"Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157\u2013166 (1994). https:\/\/doi.org\/10.1109\/72.279181","journal-title":"IEEE Trans. Neural Netw."},{"key":"48_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"353","DOI":"10.1007\/978-3-319-46487-9_22","volume-title":"Computer Vision \u2013 ECCV 2016","author":"T-W Hui","year":"2016","unstructured":"Hui, T.-W., Loy, C., Tang, X.: Depth map super-resolution by deep multi-scale guidance. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 353\u2013369. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46487-9_22"}],"container-title":["Communications in Computer and Information Science","Computer Supported Cooperative Work and Social Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-16-2540-4_48","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,5,6]],"date-time":"2021-05-06T14:13:50Z","timestamp":1620310430000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-16-2540-4_48"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9789811625398","9789811625404"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-981-16-2540-4_48","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"7 May 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ChineseCSCW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"CCF Conference on Computer Supported Cooperative Work and Social Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"chinesecscw2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.scholat.com\/confweb\/CCSCW2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}