{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T06:52:44Z","timestamp":1726123964168},"publisher-location":"Singapore","reference-count":14,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811625398"},{"type":"electronic","value":"9789811625404"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-981-16-2540-4_26","type":"book-chapter","created":{"date-parts":[[2021,5,6]],"date-time":"2021-05-06T18:04:30Z","timestamp":1620324270000},"page":"352-363","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Fast Shapelet Discovery with Trend Feature Symbolization"],"prefix":"10.1007","author":[{"given":"Shichao","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Xiangwei","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Cun","family":"Ji","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,5,7]]},"reference":[{"issue":"001","key":"26_CR1","first-page":"29","volume":"046","author":"W Yan","year":"2019","unstructured":"Yan, W., Li, G.: Research on time series classification based on shapelet. Comput. Sci. 046(001), 29\u201335 (2019)","journal-title":"Comput. Sci."},{"issue":"003","key":"26_CR2","first-page":"763","volume":"000","author":"C Zhao","year":"2020","unstructured":"Zhao, C., Wang, T., Liu, S., et al.: A fast time series shapelet discovery algorithm combining selective ex-traction and subclass clustering. J. Softw. 000(003), 763\u2013777 (2020)","journal-title":"J. Softw."},{"key":"26_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"330","DOI":"10.1007\/978-3-319-45817-5_26","volume-title":"Web Technologies and Applications","author":"Z Zhang","year":"2016","unstructured":"Zhang, Z., Zhang, H., Wen, Y., Yuan, X.: Accelerating time series shapelets discovery with key points. In: Li, F., Shim, K., Zheng, K., Liu, G. (eds.) APWeb 2016. LNCS, vol. 9932, pp. 330\u2013342. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-45817-5_26"},{"doi-asserted-by":"crossref","unstructured":"Ye, L., Keogh, E.: Time series shapelets: a novel technique that allows accurate, interpretable and fast classification. Data Mining Knowl. Discovery 22(1\u20132), 149\u2013182 (2011)","key":"26_CR4","DOI":"10.1007\/s10618-010-0179-5"},{"doi-asserted-by":"crossref","unstructured":"Bagnall, A., Lines, J., Bostrom, A., et al.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining Knowl. Discov. 31(3) (2017)","key":"26_CR5","DOI":"10.1007\/s10618-016-0483-9"},{"doi-asserted-by":"crossref","unstructured":"Rakthanmanon, T., Keogh, E.: Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of the 2013 SIAM International Conference on Data Mining. Philadelphia: Society for Industrial and Applied Mathematics, pp. 668\u2013676 (2013)","key":"26_CR6","DOI":"10.1137\/1.9781611972832.74"},{"doi-asserted-by":"crossref","unstructured":"Wei,Y., Jiao, L., Wang, S., et al.: Time series classification with max-correlation and min-redundancy shapelets transformation. In: International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI), Beijing, China, pp. 7\u201312 (2015)","key":"26_CR7","DOI":"10.1109\/IIKI.2015.9"},{"doi-asserted-by":"crossref","unstructured":"Renard, X., Rifqi, M., Detyniecki, M.: Random-shapelet: an algorithm for fast shapelet discovery. In: IEEE International Conference on Data Science and Advanced Analytics, pp. 1\u201310. IEEE (2015)","key":"26_CR8","DOI":"10.1109\/DSAA.2015.7344782"},{"issue":"2","key":"26_CR9","first-page":"1","volume":"49","author":"J Grabocka","year":"2015","unstructured":"Grabocka, J., Wistuba, M., Schmidt-Thieme, L.: Fast classification of univariate and multivariate time series through shapelet discovery. Knowl. Inf. Syst. 49(2), 1\u201326 (2015)","journal-title":"Knowl. Inf. Syst."},{"issue":"2","key":"26_CR10","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1007\/s10618-007-0064-z","volume":"15","author":"J Lin","year":"2007","unstructured":"Lin, J., Keogh, E., Li, W., et al.: Experiencing SAX: a novel symbolic representation of time series. Data Mining Knowl. Discov. 15(2), 107\u2013144 (2007)","journal-title":"Data Mining Knowl. Discov."},{"doi-asserted-by":"crossref","unstructured":"Zhang, K., Li, Y., Chai, Y., et al.: Trend-based symbolic aggregate approximation for time series representation. In: Chinese Control and Decision Conference (CCDC). Shenyang, pp. 2234\u20132240 (2018)","key":"26_CR11","DOI":"10.1109\/CCDC.2018.8407498"},{"issue":"2","key":"26_CR12","doi-asserted-by":"publisher","first-page":"67","DOI":"10.4018\/IJWSR.2017040104","volume":"14","author":"C Ji","year":"2017","unstructured":"Ji, C., Zhao, C., Lei, P., et al.: A fast shapelet discovery algorithm based on important data points. Int. J. Web Serv. Res. 14(2), 67\u201380 (2017)","journal-title":"Int. J. Web Serv. Res."},{"unstructured":"Bagnall, A., Lines, J., Keogh, E., et al.: The UEA and UCR time series classification repository (2016). www.timeseriesclassification.com","key":"26_CR13"},{"key":"26_CR14","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1016\/j.comnet.2018.11.031","volume":"148","author":"C Ji","year":"2019","unstructured":"Ji, C., Zhao, C., Liu, S., et al.: A fast shapelet selection algorithm for time series classification. Comput. Netw. 148, 231\u2013240 (2019)","journal-title":"Comput. Netw."}],"container-title":["Communications in Computer and Information Science","Computer Supported Cooperative Work and Social Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-16-2540-4_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,5,6]],"date-time":"2021-05-06T18:09:14Z","timestamp":1620324554000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-16-2540-4_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9789811625398","9789811625404"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-981-16-2540-4_26","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"7 May 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ChineseCSCW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"CCF Conference on Computer Supported Cooperative Work and Social Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"chinesecscw2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.scholat.com\/confweb\/CCSCW2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}