{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T06:52:38Z","timestamp":1726123958315},"publisher-location":"Singapore","reference-count":20,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811625398"},{"type":"electronic","value":"9789811625404"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-981-16-2540-4_23","type":"book-chapter","created":{"date-parts":[[2021,5,6]],"date-time":"2021-05-06T18:04:30Z","timestamp":1620324270000},"page":"307-319","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Cooperative Anomaly Detection Model and Real-Time Update Strategy for Industrial Stream Data"],"prefix":"10.1007","author":[{"given":"Tengjiang","family":"Wang","sequence":"first","affiliation":[]},{"given":"Pengyu","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Cun","family":"Ji","sequence":"additional","affiliation":[]},{"given":"Shijun","family":"Liu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,5,7]]},"reference":[{"key":"23_CR1","unstructured":"Lee, J.: Industrial Big Data. Mechanical Industry Press (2015)"},{"key":"23_CR2","unstructured":"Hu, X., Tang, X., Hu, R.: Modern Detection Technology and System. China Machine Press, Beijing (2015). (in Chinese)"},{"issue":"6","key":"23_CR3","first-page":"788","volume":"26","author":"D Zhou","year":"2000","unstructured":"Zhou, D., Ding, X.: Theory and applications of fault tolerant control. Acta Autom. Sin. 26(6), 788\u2013797 (2000)","journal-title":"Acta Autom. Sin."},{"issue":"3","key":"23_CR4","doi-asserted-by":"publisher","first-page":"279","DOI":"10.3390\/s16030279","volume":"16","author":"C Ji","year":"2016","unstructured":"Ji, C., Shao, Q., Sun, J., et al.: Device data ingestion for industrial big data platforms with a case study. Sensors 16(3), 279 (2016)","journal-title":"Sensors"},{"key":"23_CR5","unstructured":"Ester, M., Kriegel, H.P., Sander, J., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, no. 34, pp. 226\u2013231 (1996)"},{"issue":"3","key":"23_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1541880.1541882","volume":"41","author":"V Chandola","year":"2009","unstructured":"Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1\u201358 (2009)","journal-title":"ACM Comput. Surv."},{"issue":"S2","key":"23_CR7","first-page":"24","volume":"44","author":"JF Wu","year":"2017","unstructured":"Wu, J.F., Jin, W., Tang, P.: Survey on monitoring techniques for data abnormalities. Comput. Sci. 44(S2), 24\u201328 (2017)","journal-title":"Comput. Sci."},{"key":"23_CR8","unstructured":"Toledano, M., Cohen, I., Ben-Simhon, Y., et al.: Real-time anomaly detection system for time series at scale. In: KDD 2017 Workshop on Anomaly Detection in Finance, pp. 56\u201365 (2018)"},{"key":"23_CR9","unstructured":"Liu, Y., Yao, K.T., Liu, S., et al.: System and method for failure prediction for rod pump artificial lift systems. U.S. Patent 8,988,236, 24 March 2015"},{"key":"23_CR10","unstructured":"Ren\u00e7bero\u011flu, E.: Fundamental techniques of feature engineering for machine learning. Towards Data Sci. (2019)"},{"issue":"1","key":"23_CR11","doi-asserted-by":"publisher","first-page":"1","DOI":"10.2200\/S00573ED1V01Y201403DMK008","volume":"5","author":"M Gupta","year":"2014","unstructured":"Gupta, M., Gao, J., Aggarwal, C., et al.: Outlier detection for temporal data. Synth. Lect. Data Min. Knowl. Discov. 5(1), 1\u2013129 (2014)","journal-title":"Synth. Lect. Data Min. Knowl. Discov."},{"key":"23_CR12","unstructured":"Gao, C.: Network traffic anomaly detection based on industrial control network. Beijing University of Technology (2014)"},{"issue":"4","key":"23_CR13","first-page":"74","volume":"18","author":"C Xu","year":"2019","unstructured":"Xu, C., Lin, T.: Improved K-means algorithm based on anomaly detection. Softw. Guide 18(4), 74\u201378 (2019)","journal-title":"Softw. Guide"},{"issue":"6","key":"23_CR14","first-page":"64","volume":"51","author":"J Fujun","year":"2014","unstructured":"Fujun, J., Min, C., Lei, W., et al.: SVM based energy consumption abnormality detection in ARM system. Electr. Measur. Instrum. 51(6), 64\u201369 (2014)","journal-title":"Electr. Measur. Instrum."},{"key":"23_CR15","unstructured":"Chen, Y.: Research on time series anomaly detection based on similarity analysis. Southwest Jiaotong University (2011). (in Chinese)"},{"key":"23_CR16","unstructured":"Ding, G., Sun, S.: Research on outlier detection algorithm based on dynamic rule constraint. Technol. Inf. (008), 41\u201342 (2019). (in Chinese)"},{"issue":"10","key":"23_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.18637\/jss.v059.i10","volume":"59","author":"H Wickham","year":"2014","unstructured":"Wickham, H.: Tidy data. J. Stat. Softw. 59(10), 1\u201323 (2014)","journal-title":"J. Stat. Softw."},{"issue":"11","key":"23_CR18","doi-asserted-by":"publisher","first-page":"2065","DOI":"10.1002\/spe.2756","volume":"50","author":"C Ji","year":"2019","unstructured":"Ji, C., Zou, X., Liu, S., et al.: ADARC: an anomaly detection algorithm based on relative outlier distance and biseries correlation. Softw. Pract. Experience 50(11), 2065\u20132081 (2019). https:\/\/doi.org\/10.1002\/spe.2756","journal-title":"Softw. Pract. Experience"},{"issue":"3","key":"23_CR19","first-page":"726","volume":"31","author":"XO Ding","year":"2020","unstructured":"Ding, X.O., Yu, S.J., Wang, M.X., Wang, H.Z., Gao, H., Yang, D.H.: Anomaly detection on industrial time series based on correlation analysis. J. Softw. 31(3), 726\u2013747 (2020). (in Chinese)","journal-title":"J. Softw."},{"key":"23_CR20","unstructured":"McMahan, B.: Follow-the-regularized-leader and mirror descent: equivalence theorems and L1 regularization. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 525\u2013533 (2011)"}],"container-title":["Communications in Computer and Information Science","Computer Supported Cooperative Work and Social Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-16-2540-4_23","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,5,6]],"date-time":"2021-05-06T18:08:02Z","timestamp":1620324482000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-16-2540-4_23"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9789811625398","9789811625404"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-981-16-2540-4_23","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"7 May 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ChineseCSCW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"CCF Conference on Computer Supported Cooperative Work and Social Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"chinesecscw2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.scholat.com\/confweb\/CCSCW2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}