{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T06:52:34Z","timestamp":1726123954171},"publisher-location":"Singapore","reference-count":15,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811625398"},{"type":"electronic","value":"9789811625404"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-981-16-2540-4_19","type":"book-chapter","created":{"date-parts":[[2021,5,6]],"date-time":"2021-05-06T18:04:30Z","timestamp":1620324270000},"page":"251-262","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Research on Machine Learning Method for Equipment Health Management in Industrial Internet of Things"],"prefix":"10.1007","author":[{"given":"Zheng","family":"Tan","sequence":"first","affiliation":[]},{"given":"Yiping","family":"Wen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,5,7]]},"reference":[{"key":"19_CR1","doi-asserted-by":"publisher","first-page":"557","DOI":"10.1016\/j.future.2018.03.003","volume":"87","author":"Z Huang","year":"2018","unstructured":"Huang, Z., Lin, K.J., Tsai, B.L., et al.: Building edge intelligence for online activity recognition in service-oriented IoT systems. Future Gener. Comput. Syst. 87, 557\u2013567 (2018)","journal-title":"Future Gener. Comput. Syst."},{"doi-asserted-by":"crossref","unstructured":"Wang, S., Wan, J., Zhang, D., et al.: Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Comput. Netw. 101, 158\u2013168 (2016)","key":"19_CR2","DOI":"10.1016\/j.comnet.2015.12.017"},{"doi-asserted-by":"crossref","unstructured":"Hu, C., Youn, B.D., Wang, P., Yoon, J.T.: Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliab. Eng. Syst. Saf. 103, 120\u2013135 (2012)","key":"19_CR3","DOI":"10.1016\/j.ress.2012.03.008"},{"issue":"3","key":"19_CR4","doi-asserted-by":"publisher","first-page":"1694","DOI":"10.1109\/TIE.2004.824875","volume":"51","author":"N Gebraeel","year":"2004","unstructured":"Gebraeel, N., Lawley, M., Liu, R., et al.: Residual life predictions from vibration-based degradation signals: a neural network approach. IEEE Trans. Ind. Electron. 51(3), 1694\u2013700 (2004)","journal-title":"IEEE Trans. Ind. Electron."},{"doi-asserted-by":"crossref","unstructured":"Mark, W.D., Hines, J.A.: Frequency-domain assessment of gear-tooth bending-fatigue damage-progression using the average-log-ratio, ALR, algorithm. Mech. Syst. Signal Process. 45(2), 479\u2013487 (2014)","key":"19_CR5","DOI":"10.1016\/j.ymssp.2013.11.015"},{"key":"19_CR6","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1016\/j.ymssp.2014.10.010","volume":"56","author":"D Wang","year":"2015","unstructured":"Wang, D., Tse, P.W.: Prognostics of slurry pumps based on a moving-average wear degradation index and a general sequential Monte Carlo method. Mech. Syst. Signal Process. 56, 213\u2013229 (2015)","journal-title":"Mech. Syst. Signal Process."},{"issue":"3","key":"19_CR7","doi-asserted-by":"publisher","first-page":"2592","DOI":"10.1016\/j.eswa.2010.08.049","volume":"38","author":"A Widodo","year":"2011","unstructured":"Widodo, A., Yang, B.S.: Application of relevance vector machine and survival probability to machine degradation assessment. Expert Syst. Appl. 38(3), 2592\u20132599 (2011)","journal-title":"Expert Syst. Appl."},{"doi-asserted-by":"crossref","unstructured":"Giantomassi, A., Ferracuti, F., Benini, A., et al.: Hidden Markov model for health estimation and prognosis of turbofan engines. In: ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, pp. 1\u20136 (2011)","key":"19_CR8","DOI":"10.1115\/DETC2011-48174"},{"doi-asserted-by":"crossref","unstructured":"Miao, J.Q., Li, X.G., Ye, J.H.: Predicting research of mechanical gyroscope life based on wavelet support vector. In: First International Conference on Reliability Systems Engineering, pp. 1\u20135 (2016)","key":"19_CR9","DOI":"10.1109\/ICRSE.2015.7366508"},{"unstructured":"Wang, L.X., Wu, Z.H., Fu, Y.D., et al.: Remaining life predictions of fan based on time series analysis and BP neural networks. In: Information Technology, Networking, Electronic and Automation Control Conference, pp. 607\u2013611 (2016)","key":"19_CR10"},{"doi-asserted-by":"crossref","unstructured":"Liu, J., Saxena, A., Kai, G., et al.: An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. In: Annual Conference of the Prognostics and Health Management Society, pp. 1\u20139 (2010)","key":"19_CR11","DOI":"10.36001\/phmconf.2010.v2i1.1896"},{"unstructured":"Wang, T., Yu, J., Siegel, D., Lee, J.: A similarity-based prognostics approach for engineered systems. In: International conference on prognostics and health management, pp. 4\u20139 (2008)","key":"19_CR12"},{"doi-asserted-by":"crossref","unstructured":"Bektas, O., Jones, J.A., Sankararaman, S., et al.: A neural network filtering approach for similarity-based remaining useful life estimation. Int. J. Adv. Manuf. Technol. 101, 87\u2013103 (2019)","key":"19_CR13","DOI":"10.1007\/s00170-018-2874-0"},{"doi-asserted-by":"crossref","unstructured":"Saxena, A., Goebel, K., Simon, D., Eklund, N.: Damage propagation modeling for aircraft engine run-to-failure simulation. In: International Conference on Prognostics and Health Management, pp. 1\u20139 (2008)","key":"19_CR14","DOI":"10.1109\/PHM.2008.4711414"},{"doi-asserted-by":"crossref","unstructured":"Lasheras, F.S., et al.: A hybrid PCA-CART-MARS-based prognostic approach of the remaining useful life for aircraft engines. Sensors (Basel, Switzerland) 15(3), 7062\u20137083 (2015)","key":"19_CR15","DOI":"10.3390\/s150307062"}],"container-title":["Communications in Computer and Information Science","Computer Supported Cooperative Work and Social Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-16-2540-4_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T08:39:07Z","timestamp":1725007147000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-16-2540-4_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9789811625398","9789811625404"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-981-16-2540-4_19","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"7 May 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ChineseCSCW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"CCF Conference on Computer Supported Cooperative Work and Social Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"chinesecscw2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.scholat.com\/confweb\/CCSCW2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}