{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T06:52:34Z","timestamp":1726123954357},"publisher-location":"Singapore","reference-count":17,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811625398"},{"type":"electronic","value":"9789811625404"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-981-16-2540-4_18","type":"book-chapter","created":{"date-parts":[[2021,5,6]],"date-time":"2021-05-06T18:04:30Z","timestamp":1620324270000},"page":"237-250","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["A Low-Code Development Framework for Constructing Industrial Apps"],"prefix":"10.1007","author":[{"given":"Jingyue","family":"Wang","sequence":"first","affiliation":[]},{"given":"Binhang","family":"Qi","sequence":"additional","affiliation":[]},{"given":"Wentao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Hailong","family":"Sun","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,5,7]]},"reference":[{"issue":"3","key":"18_CR1","doi-asserted-by":"publisher","first-page":"2213","DOI":"10.1109\/JSYST.2019.2905565","volume":"13","author":"W Zhang","year":"2019","unstructured":"Zhang, W., Yang, D., Wang, H.: Data-driven methods for predictive maintenance of industrial equipment: a survey. IEEE Syst. J. 13(3), 2213\u20132227 (2019)","journal-title":"IEEE Syst. J."},{"key":"18_CR2","doi-asserted-by":"crossref","unstructured":"Zhong, R.Y., Xu, X., Klotz, E., et al.: Intelligent manufacturing in the context of industry 4.0: a review. Eng. 3(5), 616\u2013630 (2017)","DOI":"10.1016\/J.ENG.2017.05.015"},{"key":"18_CR3","doi-asserted-by":"publisher","first-page":"15332","DOI":"10.1109\/ACCESS.2020.2966919","volume":"8","author":"G Daniel","year":"2020","unstructured":"Daniel, G., Cabot, J., Deruelle, L., et al.: Xatkit: a multimodal low-code chatbot development framework. IEEE Access 8, 15332\u201315346 (2020)","journal-title":"IEEE Access"},{"key":"18_CR4","unstructured":"Rademakers, T.: Activiti in Action: executable business processes in BPMN 2.0. Manning (2012)"},{"key":"18_CR5","doi-asserted-by":"crossref","unstructured":"Mathew, V., Toby, T., Singh, V., Rao, B.M., Kumar, M.G.: Prediction of remaining useful lifetime (RUL) of turbofan engine using machine learning. In: IEEE International Conference on Circuits and Systems (ICCS), pp. 306\u2013311. IEEE (2017)","DOI":"10.1109\/ICCS1.2017.8326010"},{"key":"18_CR6","doi-asserted-by":"publisher","first-page":"14953","DOI":"10.1109\/ACCESS.2020.2966568","volume":"8","author":"S Proto","year":"2020","unstructured":"Proto, S., Di Corso, E., Apiletti, D., et al.: REDTag: a predictive maintenance framework for parcel delivery services. IEEE Access 8, 14953\u201314964 (2020)","journal-title":"IEEE Access"},{"issue":"3","key":"18_CR7","doi-asserted-by":"publisher","first-page":"812","DOI":"10.1109\/TII.2014.2349359","volume":"11","author":"GA Susto","year":"2014","unstructured":"Susto, G.A., Schirru, A., Pampuri, S., et al.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inform. 11(3), 812\u2013820 (2014)","journal-title":"IEEE Trans. Ind. Inform."},{"key":"18_CR8","doi-asserted-by":"crossref","unstructured":"Carvalho, T.P., Soares, F.A., Vita, R., et al.: A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137, p.106024 (2019)","DOI":"10.1016\/j.cie.2019.106024"},{"key":"18_CR9","doi-asserted-by":"crossref","unstructured":"Kanawaday, A, Sane, A.: Machine learning for predictive maintenance of industrial machines using IoT sensor data. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), 87\u201390. IEEE (2017)","DOI":"10.1109\/ICSESS.2017.8342870"},{"key":"18_CR10","doi-asserted-by":"crossref","unstructured":"Cline, B., Niculescu, R.S., Huffman, D., et al.: Predictive maintenance applications for machine learning. In: Annual Reliability and Maintainability Symposium (RAMS) 2017, pp. 1\u20137. IEEE (2017)","DOI":"10.1109\/RAM.2017.7889679"},{"key":"18_CR11","doi-asserted-by":"crossref","unstructured":"Sipos, R., Fradkin, D., Moerchen, F., et al. Log-based predictive maintenance. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1867\u20131876 (2014)","DOI":"10.1145\/2623330.2623340"},{"key":"18_CR12","unstructured":"Rymer, J.R., Koplowitz, R., Leaders, S.A., et al.: The Forrester wave$$^{\\rm TM}$$ : low-code development platforms For AD&D professionals, Q1 (2019)"},{"key":"18_CR13","doi-asserted-by":"crossref","unstructured":"Yang, S.L., Hu, J.P.: Design of task workflow based on activiti technology. In: Applied Mechanics and Materials, vol. 740, pp. 802\u2013805. Trans Tech Publications Ltd. (2015)","DOI":"10.4028\/www.scientific.net\/AMM.740.802"},{"issue":"09","key":"18_CR14","first-page":"121","volume":"27","author":"Y Yu","year":"2014","unstructured":"Yu, Y., Liu, Z., Tang, J.: Design of MES based on open source Activiti5 WorkfIow. Ind. Control Comput. 27(09), 121\u2013122 (2014)","journal-title":"Ind. Control Comput."},{"key":"18_CR15","first-page":"175","volume":"8","author":"W Sun","year":"2016","unstructured":"Sun, W., Zheng, C., Deng, C., Jiang, T.: Research and implementation of CPPCC public opinion system based on activiti. Inf. Commun. 8, 175\u2013177 (2016)","journal-title":"Inf. Commun."},{"key":"18_CR16","unstructured":"Yi, Z.: Activiti: The Definitive Guide. Tsinghua University Press (2017)"},{"key":"18_CR17","doi-asserted-by":"crossref","unstructured":"Saxena, A., Goebel, K., Simon, D., et al.: Damage propagation modeling for aircraft engine run-to-failure simulation. In: International Conference on Prognostics and Health Management, 1\u20139. IEEE (2008)","DOI":"10.1109\/PHM.2008.4711414"}],"container-title":["Communications in Computer and Information Science","Computer Supported Cooperative Work and Social Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-16-2540-4_18","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,5,6]],"date-time":"2021-05-06T18:07:21Z","timestamp":1620324441000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-16-2540-4_18"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9789811625398","9789811625404"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-981-16-2540-4_18","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"7 May 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ChineseCSCW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"CCF Conference on Computer Supported Cooperative Work and Social Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 November 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 November 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"chinesecscw2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.scholat.com\/confweb\/CCSCW2020","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}