{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T05:28:15Z","timestamp":1726118895263},"publisher-location":"Singapore","reference-count":16,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811598289"},{"type":"electronic","value":"9789811598296"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-981-15-9829-6_34","type":"book-chapter","created":{"date-parts":[[2021,3,17]],"date-time":"2021-03-17T22:02:50Z","timestamp":1616018570000},"page":"439-451","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Time Series Forecasting Using Markov Chain Probability Transition Matrix with Genetic Algorithm Optimisation"],"prefix":"10.1007","author":[{"given":"Gurdeep","family":"Saini","sequence":"first","affiliation":[]},{"given":"Naveen","family":"Yadav","sequence":"additional","affiliation":[]},{"given":"Biju R.","family":"Mohan","sequence":"additional","affiliation":[]},{"given":"Nagaraj","family":"Naik","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,3,18]]},"reference":[{"issue":"7","key":"34_CR1","doi-asserted-by":"publisher","first-page":"649","DOI":"10.1002\/fut.10130","volume":"24","author":"A Alizadeh","year":"2004","unstructured":"Alizadeh, A., Nomikos, N.: A Markov regime switching approach for hedging stock indices. J. Futures Markets 24(7), 649\u2013674 (2004)","journal-title":"J. Futures Markets"},{"key":"34_CR2","doi-asserted-by":"crossref","unstructured":"Al-Jumeily, D., Hussain, A., Alaskar, H.: Recurrent neural networks inspired by artificial immune algorithm for time series prediction. In: Proceedings of the International Joint Conference on Neural Networks (2013)","DOI":"10.1109\/IJCNN.2013.6707137"},{"key":"34_CR3","unstructured":"Andre, D., Teller, A.: Evolving team Darwin United. In: RoboCup-98: Robot Soccer World Cup II"},{"key":"34_CR4","unstructured":"Antoni, W.: Time Series Modeling and Forecasting Based on a Markov Chain with Changing Transition Matrices, Expert Systems With Applications (2019)"},{"issue":"3","key":"34_CR5","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1504\/IJOR.2015.069625","volume":"23","author":"M Baboli","year":"2015","unstructured":"Baboli, M., Abadeh, M.S.: Financial time series prediction by a hybrid memetic computation-based support vector regression (MA-SVR) method. Int. J. Oper. Res. 23(3), 321\u2013339 (2015)","journal-title":"Int. J. Oper. Res."},{"issue":"18","key":"34_CR6","first-page":"339","volume":"48","author":"X Bao","year":"2013","unstructured":"Bao, X., Tao, Q.: Dynamic financial distress prediction based on rough set theory and EWMA model. Int. J. Appl. Math. Stat. 48(18), 339\u2013346 (2013)","journal-title":"Int. J. Appl. Math. Stat."},{"issue":"7","key":"34_CR7","doi-asserted-by":"publisher","first-page":"1351","DOI":"10.1080\/03610926.2012.754467","volume":"43","author":"NH Bingham","year":"2014","unstructured":"Bingham, N.H.: Modelling and prediction of financial time series. Commun. Stat. Theor. Methods 43(7), 1351\u20131361 (2014)","journal-title":"Commun. Stat. Theor. Methods"},{"key":"34_CR8","volume-title":"Pattern Recognition and Machine Learning","author":"CM Bishop","year":"2006","unstructured":"Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Cham, Heidelberg, New York (2006)"},{"issue":"1","key":"34_CR9","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1111\/1467-9884.00117","volume":"47","author":"S Brooks","year":"1998","unstructured":"Brooks, S.: Markov chain Monte Carlo method and its application. J. R. Stat. Soc. Ser. D (The Statistician) 47(1), 69\u2013100 (1998)","journal-title":"J. R. Stat. Soc. Ser. D (The Statistician)"},{"volume-title":"Handbook of Markov Chain Monte Carlo","year":"2011","key":"34_CR10","unstructured":"Brooks, S., Gelman, A., Jones, G., Meng, X.L. (eds.): Handbook of Markov Chain Monte Carlo. CRC Press, Boca Raton, FL (2011)"},{"key":"34_CR11","doi-asserted-by":"crossref","unstructured":"Cheng, C., Xu, W., Wang, J.: A comparison of ensemble methods in financial market prediction. In: Proceedings of the 2012 5th International Joint Conference on Computational Sciences and Optimization, CSO 2012, p. 755 (2012)","DOI":"10.1109\/CSO.2012.171"},{"issue":"3","key":"34_CR12","doi-asserted-by":"publisher","first-page":"409","DOI":"10.1017\/S0266466600006794","volume":"12","author":"S Chib","year":"1996","unstructured":"Chib, S., Greenberg, E.: Markov chain Monte Carlo simulation methods in econometrics. Econ. Theor. 12(3), 409\u2013431 (1996)","journal-title":"Econ. Theor."},{"key":"34_CR13","unstructured":"Yonghui, D., Dongmei, H., Weihui, D.: Modelling mast and computing of stock index forecasting based on neural network and markov chain. Sci. World J. 2014(1), 1\u20139 (2014). Article ID 124523"},{"key":"34_CR14","unstructured":"Longla, M., Peligrad, M.: Some Aspects of Modeling Dependence inCopula-based Markov chains Martial"},{"key":"34_CR15","doi-asserted-by":"crossref","unstructured":"Gonz\u00e1lez, A. M., Roque, A.S., Garc\u00eda-Gonz\u00e1lez, J.: Modeling and forecasting electricity prices with input\/output hidden Markov models. IEEE Transact. Power Syst. 20(1), 13\u201324 (2005)","DOI":"10.1109\/TPWRS.2004.840412"},{"key":"34_CR16","doi-asserted-by":"crossref","unstructured":"Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1996)","DOI":"10.7551\/mitpress\/3927.001.0001"}],"container-title":["Smart Innovation, Systems and Technologies","Modeling, Simulation and Optimization"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-15-9829-6_34","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,26]],"date-time":"2024-08-26T05:39:29Z","timestamp":1724650769000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-981-15-9829-6_34"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9789811598289","9789811598296"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-981-15-9829-6_34","relation":{},"ISSN":["2190-3018","2190-3026"],"issn-type":[{"type":"print","value":"2190-3018"},{"type":"electronic","value":"2190-3026"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"18 March 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}