{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T22:48:08Z","timestamp":1726094888104},"publisher-location":"Singapore","reference-count":22,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811556784"},{"type":"electronic","value":"9789811556791"}],"license":[{"start":{"date-parts":[[2020,8,30]],"date-time":"2020-08-30T00:00:00Z","timestamp":1598745600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,8,30]],"date-time":"2020-08-30T00:00:00Z","timestamp":1598745600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-981-15-5679-1_67","type":"book-chapter","created":{"date-parts":[[2020,8,29]],"date-time":"2020-08-29T08:05:18Z","timestamp":1598688318000},"page":"691-699","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Segmentation and Assessment of Leukocytes Using Entropy-Based Procedure"],"prefix":"10.1007","author":[{"given":"S.","family":"Manasi","sequence":"first","affiliation":[]},{"given":"M.","family":"Ramyaa","sequence":"additional","affiliation":[]},{"given":"N.","family":"Sri Madhava Raja","sequence":"additional","affiliation":[]},{"given":"S.","family":"Arunmozhi","sequence":"additional","affiliation":[]},{"given":"Suresh Chandra","family":"Satapathy","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,8,30]]},"reference":[{"key":"67_CR1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2019.11.013","author":"A Bhandary","year":"2019","unstructured":"Bhandary, A., et al.: Deep-learning framework to detect lung abnormality\u2014a study with chest X-ray and lung CT scan images. Pattern Recogn. Lett. (2019). \nhttps:\/\/doi.org\/10.1016\/j.patrec.2019.11.013","journal-title":"Pattern Recogn. Lett."},{"doi-asserted-by":"publisher","unstructured":"Fernandes, S.L., et al.: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput. Appl. 1\u201312 (2019). \nhttps:\/\/doi.org\/10.1007\/s00521-019-04369-5","key":"67_CR2","DOI":"10.1007\/s00521-019-04369-5"},{"key":"67_CR3","doi-asserted-by":"publisher","first-page":"302","DOI":"10.1007\/s10916-019-1428-9","volume":"43","author":"UR Acharya","year":"2019","unstructured":"Acharya, U.R., et al.: Automated detection of Alzheimer\u2019s disease using brain MRI images\u2014a study with various feature extraction techniques. J. Med. Syst. 43, 302 (2019). \nhttps:\/\/doi.org\/10.1007\/s10916-019-1428-9","journal-title":"J. Med. Syst."},{"key":"67_CR4","doi-asserted-by":"publisher","first-page":"101698","DOI":"10.1016\/j.artmed.2019.07.006","volume":"100","author":"V Jahmunah","year":"2019","unstructured":"Jahmunah, V., et al.: Automated detection of schizophrenia using nonlinear signal processing methods. Artif. Intell. Med. 100, 101698 (2019). \nhttps:\/\/doi.org\/10.1016\/j.artmed.2019.07.006","journal-title":"Artif. Intell. Med."},{"doi-asserted-by":"publisher","unstructured":"Bhateja, V., Nigam, M., Bhadauria, A.S., Arya, A., Yu-Dong Zhang, Y-D.: Human visual system based optimized mathematical morphology approach for enhancement of brain MR images, J. Ambient. Intell. Humaniz. Comput. 1\u20139 (2019). \nhttps:\/\/doi.org\/10.1007\/s12652-019-01386-z","key":"67_CR5","DOI":"10.1007\/s12652-019-01386-z"},{"issue":"8","key":"67_CR6","doi-asserted-by":"publisher","first-page":"3861","DOI":"10.1007\/s13369-018-3382-0","volume":"43","author":"SC Satapathy","year":"2018","unstructured":"Satapathy, S.C., El-Maleh, A., Bhateja, V.: Intelligent computing in multidisciplinary engineering applications. Arab. J. Sci. Eng. 43(8), 3861\u20133862 (2018)","journal-title":"Arab. J. Sci. Eng."},{"key":"67_CR7","doi-asserted-by":"publisher","first-page":"255","DOI":"10.3233\/978-1-61499-939-3-255","volume":"314","author":"N Dey","year":"2019","unstructured":"Dey, N., Shi, F., Rajinikanth, V.: Leukocyte nuclei segmentation using entropy function and Chan-Vese approach. Inf. Technol. Intell. Transp. Syst. 314, 255\u2013264 (2019). \nhttps:\/\/doi.org\/10.3233\/978-1-61499-939-3-255","journal-title":"Inf. Technol. Intell. Transp. Syst."},{"doi-asserted-by":"publisher","unstructured":"Raja, N.S.M., Arunmozhi, S., Lin, H., Dey, N., Rajinikanth, V.: A study on segmentation of leukocyte image with Shannon\u2019s entropy. Histopathol Image Anal. Med. Decis. Mak. 1\u201327 (2019).\u00a0\nhttps:\/\/doi.org\/10.4018\/978-1-5225-6316-7.ch001","key":"67_CR8","DOI":"10.4018\/978-1-5225-6316-7.ch001"},{"issue":"4","key":"67_CR9","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1016\/j.compmedimag.2011.01.003","volume":"35","author":"SH Rezatofighi","year":"2011","unstructured":"Rezatofighi, S.H., Soltanian-Zadeh, H.: Automatic recognition of\u00a0five types of white blood cells in peripheral blood. Comput. Med. Imaging Graph. 35(4), 333\u2013343 (2011)","journal-title":"Comput. Med. Imaging Graph."},{"key":"67_CR10","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1186\/s12938-015-0037-1","volume":"14","author":"J Prinyakupt","year":"2015","unstructured":"Prinyakupt, J., Pluempitiwiriyawej, C.: Segmentation of white blood cells and comparison of cell morphology by linear and na\u00efve Bayes classifiers. BioMed Eng. OnLine 14, 63 (2015). \nhttps:\/\/doi.org\/10.1186\/s12938-015-0037-1","journal-title":"BioMed Eng. OnLine"},{"issue":"3","key":"67_CR11","doi-asserted-by":"publisher","first-page":"92","DOI":"10.4018\/IJACI.2019070106","volume":"10","author":"Ali","year":"2019","unstructured":"Ali, et al.: Adam deep learning with SOM for human sentiment classification. Int. J. Ambient Comput. Intell. (IJACI) 10(3), 92\u2013116 (2019). \nhttps:\/\/doi.org\/10.4018\/IJACI.2019070106","journal-title":"Int. J. Ambient Comput. Intell. (IJACI)"},{"doi-asserted-by":"publisher","unstructured":"Raja, N.S.M., Fernandes, S.L. Dey, N., Satapathy, S.C., Rajinikanth, V.: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient. Intell. Humaniz. Comput. 1\u201312 (2018). \nhttps:\/\/doi.org\/10.1007\/s12652-018-0854-8","key":"67_CR12","DOI":"10.1007\/s12652-018-0854-8"},{"issue":"2","key":"67_CR13","doi-asserted-by":"publisher","first-page":"51","DOI":"10.3390\/sym10020051","volume":"10","author":"N Dey","year":"2018","unstructured":"Dey, N., Rajinikanth, V., Ashour, A.S., Tavares, J.M.R.S.: Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 10(2), 51 (2018). \nhttps:\/\/doi.org\/10.3390\/sym10020051","journal-title":"Symmetry"},{"key":"67_CR14","doi-asserted-by":"publisher","first-page":"160","DOI":"10.1016\/j.future.2018.03.025","volume":"85","author":"V Rajinikanth","year":"2018","unstructured":"Rajinikanth, V., Dey, N., Satapathy, S.C., Ashour, A.S.: An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Futur. Gener. Comput. Syst. 85, 160\u2013172 (2018). \nhttps:\/\/doi.org\/10.1016\/j.future.2018.03.025","journal-title":"Futur. Gener. Comput. Syst."},{"unstructured":"LISC.\u00a0\nhttp:\/\/users.cecs.anu.edu.au\/~hrezatofighi\/Data\/Leukocyte%20Data.htm\n\n. \u00a0Accessed on 18 October 2019","key":"67_CR15"},{"issue":"8","key":"67_CR16","doi-asserted-by":"publisher","first-page":"4365","DOI":"10.1007\/s13369-017-3053-6","volume":"43","author":"V Rajinikanth","year":"2018","unstructured":"Rajinikanth, V., Satapathy, S.C.: Segmentation of ischemic stroke lesion in brain MRI based on social group optimization and Fuzzy-Tsallis entropy. Arab. J. Sci. Eng. 43(8), 4365\u20134378 (2018). \nhttps:\/\/doi.org\/10.1007\/s13369-017-3053-6","journal-title":"Arab. J. Sci. Eng."},{"issue":"12","key":"67_CR17","doi-asserted-by":"publisher","first-page":"3243","DOI":"10.1109\/TIP.2010.2069690","volume":"19","author":"C Li","year":"2010","unstructured":"Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243\u20133254 (2010)","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"67_CR18","doi-asserted-by":"publisher","first-page":"87","DOI":"10.4018\/IJACI.2020010105","volume":"11","author":"X Yang","year":"2020","unstructured":"Yang, X., Jiang, X.: A hybrid active contour model based on new edge-stop functions for image segmentation. Int. J. Ambient Comput. Intell. (IJACI) 11(1), 87\u201398 (2020). \nhttps:\/\/doi.org\/10.4018\/IJACI.2020010105","journal-title":"Int. J. Ambient Comput. Intell. (IJACI)"},{"key":"67_CR19","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1155\/2018\/3738049","volume":"2018","author":"SC Satapathy","year":"2018","unstructured":"Satapathy, S.C., Rajinikanth, V.: Jaya algorithm guided procedure to segment tumor from brain MRI. J. Optim. 2018, 12 (2018). \nhttps:\/\/doi.org\/10.1155\/2018\/3738049","journal-title":"J. Optim."},{"issue":"2","key":"67_CR20","doi-asserted-by":"publisher","first-page":"34","DOI":"10.4018\/IJACI.2019040103","volume":"10","author":"B Lakshmi","year":"2019","unstructured":"Lakshmi, B., Parthasarathy, S.: Human action recognition using median background and max pool convolution with nearest neighbor. Int. J. Ambient Comput. Intell. (IJACI) 10(2), 34\u201347 (2019). \nhttps:\/\/doi.org\/10.4018\/IJACI.2019040103","journal-title":"Int. J. Ambient Comput. Intell. (IJACI)"},{"issue":"3","key":"67_CR21","doi-asserted-by":"publisher","first-page":"17","DOI":"10.4018\/IJACI.2019070102","volume":"10","author":"R Wang","year":"2019","unstructured":"Wang, R., Wang, G.: Web text categorization based on statistical merging algorithm in big data environment. Int. J. Ambient Comput. Intell. (IJACI) 10(3), 17\u201332 (2019). \nhttps:\/\/doi.org\/10.4018\/IJACI.2019070102","journal-title":"Int. J. Ambient Comput. Intell. (IJACI)"},{"doi-asserted-by":"crossref","unstructured":"Rajinikanth, V., Fernandes, S.L., Bhushan, B., Sunder, N.R.: Segmentation and analysis of brain tumor using Tsallis entropy and regularised level set, Lecture Notes in Electrical Engineering, vol. 434, pp. 313\u2013321 (2018)","key":"67_CR22","DOI":"10.1007\/978-981-10-4280-5_33"}],"container-title":["Advances in Intelligent Systems and Computing","Intelligent Data Engineering and Analytics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-15-5679-1_67","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,8,29]],"date-time":"2020-08-29T08:17:02Z","timestamp":1598689022000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-981-15-5679-1_67"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,8,30]]},"ISBN":["9789811556784","9789811556791"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-981-15-5679-1_67","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2020,8,30]]},"assertion":[{"value":"30 August 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}