{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T18:18:08Z","timestamp":1726078688796},"publisher-location":"Singapore","reference-count":25,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811534249"},{"type":"electronic","value":"9789811534256"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-981-15-3425-6_38","type":"book-chapter","created":{"date-parts":[[2020,4,1]],"date-time":"2020-04-01T19:02:58Z","timestamp":1585767778000},"page":"493-505","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Water Wave Optimization with Self-adaptive Directed Propagation"],"prefix":"10.1007","author":[{"given":"Chenxin","family":"Wu","sequence":"first","affiliation":[]},{"given":"Yangyan","family":"Xu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6095-6325","authenticated-orcid":false,"given":"Yujun","family":"Zheng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,4,2]]},"reference":[{"issue":"01","key":"38_CR1","doi-asserted-by":"publisher","first-page":"1750005","DOI":"10.1142\/S1469026817500055","volume":"16","author":"OT Altinoz","year":"2017","unstructured":"Altinoz, O.T., Yilmaz, A.E.: A population size reduction approach for nondominated sorting-based optimization algorithms. Int. J. Comput. Intell. Appl. 16(01), 1750005 (2017). \nhttps:\/\/doi.org\/10.1142\/S1469026817500055","journal-title":"Int. J. Comput. Intell. Appl."},{"key":"38_CR2","unstructured":"Holland, J.H.: Genetic algorithms and classifier systems: foundations and future directions. Technical report, Michigan University, Ann Arbor, USA (1987)"},{"key":"38_CR3","doi-asserted-by":"publisher","unstructured":"Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, Perth, Australia, p. IV. IEEE Service Center, Piscataway (1942). \nhttps:\/\/doi.org\/10.1109\/ICNN.1995.488968","DOI":"10.1109\/ICNN.1995.488968"},{"key":"38_CR4","doi-asserted-by":"publisher","first-page":"165","DOI":"10.4028\/www.scientific.net\/JERA.21.165","volume":"21","author":"K Lenin","year":"2016","unstructured":"Lenin, K., Ravindhranath Reddy, B., Suryakalavathi, M.: Hybridization of firefly and water wave algorithm for solving reactive power problem. Int. J. Eng. Res. Afri. 21, 165\u2013171 (2016). \nhttps:\/\/doi.org\/10.4028\/www.scientific.net\/JERA.21.165","journal-title":"Int. J. Eng. Res. Afri."},{"key":"38_CR5","unstructured":"Liang, J., Qu, B., Suganthan, P., Chen, Q.: Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical report 201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical report, Nanyang Technological University, Singapore (2014)"},{"key":"38_CR6","doi-asserted-by":"publisher","first-page":"120","DOI":"10.1016\/j.knosys.2015.12.022","volume":"96","author":"S Mirjalili","year":"2016","unstructured":"Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120\u2013133 (2016). \nhttps:\/\/doi.org\/10.1016\/j.knosys.2015.12.022","journal-title":"Knowl.-Based Syst."},{"key":"38_CR7","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1007\/978-3-319-74690-6_7","volume-title":"The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018)","author":"AK Mohamed","year":"2018","unstructured":"Mohamed, A.K., Mohamed, A.W., Elfeky, E.Z., Saleh, M.: Enhancing AGDE algorithm using population size reduction for global numerical optimization. In: Hassanien, A.E., Tolba, M.F., Elhoseny, M., Mostafa, M. (eds.) AMLTA 2018. AISC, vol. 723, pp. 62\u201372. Springer, Cham (2018). \nhttps:\/\/doi.org\/10.1007\/978-3-319-74690-6_7"},{"key":"38_CR8","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.swevo.2017.12.005","volume":"40","author":"Z Shao","year":"2018","unstructured":"Shao, Z., Pi, D., Shao, W.: A novel discrete water wave optimization algorithm for blocking flow-shop scheduling problem with sequence-dependent setup times. Swarm Evol. Comput. 40, 53\u201375 (2018). \nhttps:\/\/doi.org\/10.1016\/j.swevo.2017.12.005","journal-title":"Swarm Evol. Comput."},{"issue":"6","key":"38_CR9","doi-asserted-by":"publisher","first-page":"702","DOI":"10.1109\/TEVC.2008.919004","volume":"12","author":"D Simon","year":"2008","unstructured":"Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702\u2013713 (2008). \nhttps:\/\/doi.org\/10.1109\/TEVC.2008.919004","journal-title":"IEEE Trans. Evol. Comput."},{"key":"38_CR10","doi-asserted-by":"publisher","unstructured":"Song, Q., Zheng, Y.J., Huang, Y.J., Xu, Z.G., Sheng, W.G., Yang, J.: Emergency drug procurement planning based on big-data driven morbidity prediction. IEEE Trans. Industr. Inform. (2018). \nhttps:\/\/doi.org\/10.1109\/TII.2018.2870879","DOI":"10.1109\/TII.2018.2870879"},{"key":"38_CR11","doi-asserted-by":"publisher","unstructured":"Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658\u20131665. IEEE (2014). \nhttps:\/\/doi.org\/10.1109\/CEC.2014.6900380","DOI":"10.1109\/CEC.2014.6900380"},{"key":"38_CR12","doi-asserted-by":"publisher","unstructured":"Tizhoosh, H.: Opposition-based learning: a new scheme for machine intelligence. In: Computational Intelligence for Modelling, Control and Automation, vol. 1, pp. 695\u2013701 (2005). \nhttps:\/\/doi.org\/10.1109\/CIMCA.2005.1631345","DOI":"10.1109\/CIMCA.2005.1631345"},{"key":"38_CR13","doi-asserted-by":"publisher","unstructured":"Viktorin, A., Pluhacek, M., Senkerik, R.: Network based linear population size reduction in shade. In: 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 86\u201393. IEEE (2016). \nhttps:\/\/doi.org\/10.1109\/INCoS.2016.50","DOI":"10.1109\/INCoS.2016.50"},{"key":"38_CR14","doi-asserted-by":"publisher","unstructured":"Wu, X., Zhou, Y., Lu, Y.: Elite opposition-based water wave optimization algorithm for global optimization. Math. Probl. Eng. 2017 (2017). \nhttps:\/\/doi.org\/10.1155\/2017\/3498363","DOI":"10.1155\/2017\/3498363"},{"key":"38_CR15","doi-asserted-by":"publisher","unstructured":"Yang, X.S., Deb, S.: Cuckoo search via L\u00e9vy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210\u2013214. IEEE (2009). \nhttps:\/\/doi.org\/10.1109\/NABIC.2009.5393690","DOI":"10.1109\/NABIC.2009.5393690"},{"key":"38_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"124","DOI":"10.1007\/978-3-319-22180-9_13","volume-title":"Intelligent Computing Theories and Methodologies","author":"B Zhang","year":"2015","unstructured":"Zhang, B., Zhang, M.-X., Zhang, J.-F., Zheng, Y.-J.: A water wave optimization algorithm with variable population size and comprehensive learning. In: Huang, D.-S., Bevilacqua, V., Prashan, P. (eds.) ICIC 2015. LNCS, vol. 9225, pp. 124\u2013136. Springer, Cham (2015). \nhttps:\/\/doi.org\/10.1007\/978-3-319-22180-9_13"},{"issue":"4","key":"38_CR17","doi-asserted-by":"publisher","first-page":"2129","DOI":"10.3233\/JIFS-171001","volume":"34","author":"J Zhang","year":"2018","unstructured":"Zhang, J., Zhou, Y., Luo, Q.: An improved sine cosine water wave optimization algorithm for global optimization. J. Intell. Fuzzy Syst. 34(4), 2129\u20132141 (2018). \nhttps:\/\/doi.org\/10.3233\/JIFS-171001","journal-title":"J. Intell. Fuzzy Syst."},{"issue":"1","key":"38_CR18","doi-asserted-by":"publisher","first-page":"233","DOI":"10.1007\/s10489-018-1265-4","volume":"49","author":"J Zhang","year":"2018","unstructured":"Zhang, J., Zhou, Y., Luo, Q.: Nature-inspired approach: a wind-driven water wave optimization algorithm. Appl. Intell. 49(1), 233\u2013252 (2018). \nhttps:\/\/doi.org\/10.1007\/s10489-018-1265-4","journal-title":"Appl. Intell."},{"key":"38_CR19","doi-asserted-by":"publisher","first-page":"347","DOI":"10.1016\/j.eswa.2017.09.028","volume":"91","author":"F Zhao","year":"2018","unstructured":"Zhao, F., Liu, H., Zhang, Y., Ma, W., Zhang, C.: A discrete water wave optimization algorithm for no-wait flow shop scheduling problem. Expert Syst. Appl. 91, 347\u2013363 (2018). \nhttps:\/\/doi.org\/10.1016\/j.eswa.2017.09.028","journal-title":"Expert Syst. Appl."},{"issue":"4","key":"38_CR20","first-page":"933","volume":"27","author":"Y Zheng","year":"2016","unstructured":"Zheng, Y., Zhang, B., Xue, J.: Selection of key software components for formal development using water wave optimization. J. Softw. 27(4), 933\u2013942 (2016)","journal-title":"J. Softw."},{"key":"38_CR21","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.cor.2014.10.008","volume":"55","author":"YJ Zheng","year":"2015","unstructured":"Zheng, Y.J.: Water wave optimization: a new nature-inspired metaheuristic. Comput. Oper. Res. 55, 1\u201311 (2015). \nhttps:\/\/doi.org\/10.1016\/j.cor.2014.10.008","journal-title":"Comput. Oper. Res."},{"key":"38_CR22","doi-asserted-by":"publisher","first-page":"105611","DOI":"10.1016\/j.asoc.2019.105611","volume":"83","author":"YJ Zheng","year":"2019","unstructured":"Zheng, Y.J., Lu, X.Q., Du, Y.C., Xue, Y., Sheng, W.G.: Water wave optimization for combinatorial optimization: design strategies and applications. Appl. Soft Comput. 83, 105611 (2019). \nhttps:\/\/doi.org\/10.1016\/j.asoc.2019.105611","journal-title":"Appl. Soft Comput."},{"key":"38_CR23","doi-asserted-by":"publisher","first-page":"732","DOI":"10.1016\/j.asoc.2017.05.016","volume":"58","author":"YJ Zheng","year":"2017","unstructured":"Zheng, Y.J., Wang, Y., Ling, H.F., Xue, Y., Chen, S.Y.: Integrated civilian-military pre-positioning of emergency supplies: a multiobjective optimization approach. Appl. Soft Comput. 58, 732\u2013741 (2017). \nhttps:\/\/doi.org\/10.1016\/j.asoc.2017.05.016","journal-title":"Appl. Soft Comput."},{"key":"38_CR24","doi-asserted-by":"publisher","unstructured":"Zheng, Y.J., Zhang, B.: A simplified water wave optimization algorithm. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 807\u2013813. IEEE (2015). \nhttps:\/\/doi.org\/10.1109\/CEC.2015.7256974","DOI":"10.1109\/CEC.2015.7256974"},{"key":"38_CR25","doi-asserted-by":"publisher","first-page":"100561","DOI":"10.1016\/j.swevo.2019.100561","volume":"50","author":"XH Zhou","year":"2019","unstructured":"Zhou, X.H., Zhang, M.X., Xu, Z.G., Cai, C.Y., Huang, Y.J., Zheng, Y.J.: Shallow and deep neural network training by water wave optimization. Swarm Evol. Comput. 50, 100561 (2019)","journal-title":"Swarm Evol. Comput."}],"container-title":["Communications in Computer and Information Science","Bio-inspired Computing: Theories and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-15-3425-6_38","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,4,2]],"date-time":"2020-04-02T01:34:07Z","timestamp":1585791247000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-981-15-3425-6_38"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9789811534249","9789811534256"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-981-15-3425-6_38","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"2 April 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BIC-TA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Bio-Inspired Computing: Theories and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Zhengzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 November 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bicta2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2019.bicta.org","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"197","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"121","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}