{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T18:17:49Z","timestamp":1726078669566},"publisher-location":"Singapore","reference-count":44,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811534249"},{"type":"electronic","value":"9789811534256"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-981-15-3425-6_34","type":"book-chapter","created":{"date-parts":[[2020,4,1]],"date-time":"2020-04-01T19:02:58Z","timestamp":1585767778000},"page":"439-453","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Ensemble Learning via Multimodal Multiobjective Differential Evolution and Feature Selection"],"prefix":"10.1007","author":[{"given":"Jie","family":"Wang","sequence":"first","affiliation":[]},{"given":"Bo","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Kunjie","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Caitong","family":"Yue","sequence":"additional","affiliation":[]},{"given":"Xiangyang","family":"Ren","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,4,2]]},"reference":[{"key":"34_CR1","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.neucom.2017.01.113","volume":"277","author":"Y Song","year":"2018","unstructured":"Song, Y., et al.: Gaussian derivative models and ensemble extreme learning machine for texture image classification. Neurocomputing 277, 53\u201364 (2018)","journal-title":"Neurocomputing"},{"key":"34_CR2","doi-asserted-by":"publisher","first-page":"12","DOI":"10.1016\/j.dss.2017.05.012","volume":"101","author":"S Piri","year":"2017","unstructured":"Piri, S., Delen, D., Liu, T., Zolbanin, H.M.: A data analytics approach to building a clinical decision support system for diabetic retinopathy: developing and deploying a model ensemble. Decis. Support Syst. 101, 12\u201327 (2017)","journal-title":"Decis. Support Syst."},{"issue":"6","key":"34_CR3","doi-asserted-by":"publisher","first-page":"3532","DOI":"10.1109\/TGRS.2016.2519910","volume":"54","author":"Z Zhao","year":"2016","unstructured":"Zhao, Z., Jiao, L., Liu, F., Zhao, J., Chen, P.: Semisupervised discriminant feature learning for SAR image category via sparse ensemble. IEEE Trans. Geosci. Remote Sens. 54(6), 3532\u20133547 (2016)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"2","key":"34_CR4","first-page":"123","volume":"24","author":"L Breiman","year":"1996","unstructured":"Breiman, L.: Bagging predictors. Mach. Learn 24(2), 123\u2013140 (1996)","journal-title":"Mach. Learn"},{"issue":"1","key":"34_CR5","doi-asserted-by":"publisher","first-page":"119","DOI":"10.1006\/jcss.1997.1504","volume":"55","author":"Y Freund","year":"1997","unstructured":"Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119\u2013139 (1997)","journal-title":"J. Comput. Syst. Sci."},{"issue":"1","key":"34_CR6","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001)","journal-title":"Mach. Learn."},{"issue":"10","key":"34_CR7","doi-asserted-by":"publisher","first-page":"1619","DOI":"10.1109\/TPAMI.2006.211","volume":"28","author":"JJ Rodriguez","year":"2006","unstructured":"Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619\u20131630 (2006)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"06","key":"34_CR8","doi-asserted-by":"publisher","first-page":"1750028","DOI":"10.1142\/S0129065717500289","volume":"27","author":"A Fern\u00e1ndez","year":"2017","unstructured":"Fern\u00e1ndez, A., Carmona, C.J., Jose del Jesus, M., Herrera, F.: A Pareto-based ensemble with feature and instance selection for learning from multi-class imbalanced datasets. Int. J. Neural Syst. 27(06), 1750028 (2017)","journal-title":"Int. J. Neural Syst."},{"key":"34_CR9","doi-asserted-by":"publisher","first-page":"316","DOI":"10.1016\/j.neucom.2017.01.067","volume":"238","author":"WA Albukhanajer","year":"2017","unstructured":"Albukhanajer, W.A., Jin, Y., Briffa, J.A.: Classifier ensembles for image identification using multi-objective Pareto features. Neurocomputing 238, 316\u2013327 (2017)","journal-title":"Neurocomputing"},{"key":"34_CR10","doi-asserted-by":"publisher","first-page":"264","DOI":"10.1016\/j.compbiomed.2017.08.021","volume":"89","author":"H Lyu","year":"2017","unstructured":"Lyu, H., Wan, M., Han, J., Liu, R., Wang, C.: A filter feature selection method based on the maximal information coefficient and Gram-Schmidt orthogonalization for biomedical data mining. Comput. Biol. Med. 89, 264\u2013274 (2017)","journal-title":"Comput. Biol. Med."},{"key":"34_CR11","first-page":"1157","volume":"3","author":"I Guyon","year":"2003","unstructured":"Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157\u20131182 (2003)","journal-title":"J. Mach. Learn. Res."},{"issue":"1\u20132","key":"34_CR12","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1016\/S0004-3702(97)00043-X","volume":"97","author":"R Kohavi","year":"1997","unstructured":"Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1\u20132), 273\u2013324 (1997)","journal-title":"Artif. Intell."},{"issue":"2","key":"34_CR13","doi-asserted-by":"publisher","first-page":"389","DOI":"10.1007\/s10115-017-1131-4","volume":"57","author":"X Xue","year":"2017","unstructured":"Xue, X., Yao, M., Wu, Z.: A novel ensemble-based wrapper method for feature selection using extreme learning machine and genetic algorithm. Knowl. Inf. Syst. 57(2), 389\u2013412 (2017). \nhttps:\/\/doi.org\/10.1007\/s10115-017-1131-4","journal-title":"Knowl. Inf. Syst."},{"issue":"1","key":"34_CR14","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1109\/TCBB.2015.2476796","volume":"14","author":"Y Zhang","year":"2017","unstructured":"Zhang, Y., Gong, D., Cheng, J.: Multi-objective particle swarm optimization approach for cost-based feature selection in classification. IEEE\/ACM Trans. Comput. Biol. Bioinf. (TCBB) 14(1), 64\u201375 (2017)","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinf. (TCBB)"},{"key":"34_CR15","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1613\/jair.279","volume":"4","author":"JR Quinlan","year":"1996","unstructured":"Quinlan, J.R.: Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4, 77\u201390 (1996)","journal-title":"J. Artif. Intell. Res."},{"key":"34_CR16","doi-asserted-by":"publisher","first-page":"586","DOI":"10.1016\/j.neucom.2015.06.068","volume":"171","author":"S Kamyab","year":"2016","unstructured":"Kamyab, S., Eftekhari, M.: Feature selection using multimodal optimization techniques. Neurocomputing 171, 586\u2013597 (2016)","journal-title":"Neurocomputing"},{"doi-asserted-by":"publisher","unstructured":"Pan, L., Li, L., He, C., Tan, K.C.: A subregion division-based evolutionary algorithm with effective mating selection for many-objective optimization. IEEE Trans. Cybern. (2019). \nhttps:\/\/doi.org\/10.1109\/TCYB.2019.2906679","key":"34_CR17","DOI":"10.1109\/TCYB.2019.2906679"},{"key":"34_CR18","doi-asserted-by":"publisher","first-page":"603","DOI":"10.1016\/j.asoc.2017.08.024","volume":"61","author":"C He","year":"2017","unstructured":"He, C., Tian, Y., Jin, Y., Zhang, X., Pan, L.: A radial space division based evolutionary algorithm for many-objective optimization. Appl. Soft Comput. 61, 603\u2013621 (2017)","journal-title":"Appl. Soft Comput."},{"issue":"5","key":"34_CR19","doi-asserted-by":"publisher","first-page":"805","DOI":"10.1109\/TEVC.2017.2754271","volume":"22","author":"C Yue","year":"2017","unstructured":"Yue, C., Qu, B., Liang, J.: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans. Evol. Comput. 22(5), 805\u2013817 (2017)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"34_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1007\/978-3-540-31880-4_4","volume-title":"Evolutionary Multi-Criterion Optimization","author":"K Deb","year":"2005","unstructured":"Deb, K., Tiwari, S.: Omni-optimizer: a procedure for single and multi-objective optimization. In: Coello Coello, C.A., Hern\u00e1ndez Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 47\u201361. Springer, Heidelberg (2005). \nhttps:\/\/doi.org\/10.1007\/978-3-540-31880-4_4"},{"key":"34_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"550","DOI":"10.1007\/978-3-319-93815-8_52","volume-title":"Advances in Swarm Intelligence","author":"J Liang","year":"2018","unstructured":"Liang, J., Guo, Q., Yue, C., Qu, B., Yu, K.: A self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems. In: Tan, Y., Shi, Y., Tang, Q. (eds.) ICSI 2018. LNCS, vol. 10941, pp. 550\u2013560. Springer, Cham (2018). \nhttps:\/\/doi.org\/10.1007\/978-3-319-93815-8_52"},{"unstructured":"Dua, D., Graff, C.: UCI machine learning repository (2017). \nhttp:\/\/archive.ics.uci.edu\/ml","key":"34_CR22"},{"issue":"1","key":"34_CR23","doi-asserted-by":"publisher","first-page":"193","DOI":"10.1109\/TEVC.2019.2909744","volume":"24","author":"R Tanabe","year":"2020","unstructured":"Tanabe, R., Ishibuchi, H.: A review of evolutionary multimodal multiobjective optimization. IEEE Trans. Evol. Comput. 24(1), 193\u2013200 (2020). ISSN 1941-0026","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"34_CR24","doi-asserted-by":"publisher","first-page":"518","DOI":"10.1109\/TEVC.2016.2638437","volume":"21","author":"X Li","year":"2017","unstructured":"Li, X., Epitropakis, M.G., Deb, K., Engelbrecht, A.: Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE Trans. Evol. Comput. 21(4), 518\u2013538 (2017)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"34_CR25","doi-asserted-by":"publisher","first-page":"1028","DOI":"10.1016\/j.swevo.2018.10.016","volume":"44","author":"J Liang","year":"2019","unstructured":"Liang, J., et al.: Multimodal multiobjective optimization with differential evolution. Swarm Evol. Comput. 44, 1028\u20131059 (2019)","journal-title":"Swarm Evol. Comput."},{"key":"34_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1007\/978-3-642-01020-0_12","volume-title":"Evolutionary Multi-Criterion Optimization","author":"OM Shir","year":"2009","unstructured":"Shir, O.M., Preuss, M., Naujoks, B., Emmerich, M.: Enhancing decision space diversity in evolutionary multiobjective algorithms. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 95\u2013109. Springer, Heidelberg (2009). \nhttps:\/\/doi.org\/10.1007\/978-3-642-01020-0_12"},{"issue":"12","key":"34_CR27","doi-asserted-by":"publisher","first-page":"3529","DOI":"10.1007\/s00500-014-1565-5","volume":"19","author":"UK Sikdar","year":"2015","unstructured":"Sikdar, U.K., Ekbal, A., Saha, S.: MODE: multiobjective differential evolution for feature selection and classifier ensemble. Soft Comput. 19(12), 3529\u20133549 (2015). \nhttps:\/\/doi.org\/10.1007\/s00500-014-1565-5","journal-title":"Soft Comput."},{"issue":"9","key":"34_CR28","doi-asserted-by":"publisher","first-page":"1100","DOI":"10.1109\/T-C.1971.223410","volume":"100","author":"AW Whitney","year":"1971","unstructured":"Whitney, A.W.: A direct method of nonparametric measurement selection. IEEE Trans. Comput. 100(9), 1100\u20131103 (1971)","journal-title":"IEEE Trans. Comput."},{"issue":"1","key":"34_CR29","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1109\/TIT.1963.1057810","volume":"9","author":"T Marill","year":"1963","unstructured":"Marill, T., Green, D.: On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theory 9(1), 11\u201317 (1963)","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"5","key":"34_CR30","doi-asserted-by":"publisher","first-page":"525","DOI":"10.1016\/j.patrec.2008.11.012","volume":"30","author":"SC Yusta","year":"2009","unstructured":"Yusta, S.C.: Different metaheuristic strategies to solve the feature selection problem. Pattern Recogn. Lett. 30(5), 525\u2013534 (2009)","journal-title":"Pattern Recogn. Lett."},{"issue":"1","key":"34_CR31","doi-asserted-by":"publisher","first-page":"74","DOI":"10.1109\/TEVC.2018.2802784","volume":"23","author":"L Pan","year":"2018","unstructured":"Pan, L., He, C., Tian, Y., Wang, H., Zhang, X., Jin, Y.: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization. IEEE Trans. Evol. Comput. 23(1), 74\u201388 (2018)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"3","key":"34_CR32","doi-asserted-by":"publisher","first-page":"279","DOI":"10.3233\/ICA-170542","volume":"24","author":"L Pan","year":"2017","unstructured":"Pan, L., He, C., Tian, Y., Su, Y., Zhang, X.: A region division based diversity maintaining approach for many-objective optimization. Integr. Comput. Aided Eng. 24(3), 279\u2013296 (2017)","journal-title":"Integr. Comput. Aided Eng."},{"issue":"4","key":"34_CR33","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1016\/j.patrec.2006.09.003","volume":"28","author":"X Wang","year":"2007","unstructured":"Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R.: Feature selection based on rough sets and particle swarm optimization. Pattern Recogn. Lett. 28(4), 459\u2013471 (2007)","journal-title":"Pattern Recogn. Lett."},{"key":"34_CR34","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1016\/j.apenergy.2019.01.008","volume":"237","author":"K Yu","year":"2019","unstructured":"Yu, K., Qu, B., Yue, C., Ge, S., Chen, X., Liang, J.: A performance-guided jaya algorithm for parameters identification of photovoltaic cell and module. Appl. Energy 237, 241\u2013257 (2019)","journal-title":"Appl. Energy"},{"issue":"2","key":"34_CR35","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1016\/j.eswa.2005.09.024","volume":"31","author":"CL Huang","year":"2006","unstructured":"Huang, C.L., Wang, C.J.: A GA-based feature selection and parameters optimizationfor support vector machines. Expert Syst. Appl. 31(2), 231\u2013240 (2006)","journal-title":"Expert Syst. Appl."},{"key":"34_CR36","doi-asserted-by":"publisher","first-page":"248","DOI":"10.1016\/j.asoc.2016.08.011","volume":"49","author":"Y Wan","year":"2016","unstructured":"Wan, Y., Wang, M., Ye, Z., Lai, X.: A feature selection method based on modified binary coded ant colony optimization algorithm. Appl. Soft Comput. 49, 248\u2013258 (2016)","journal-title":"Appl. Soft Comput."},{"issue":"1\u20133","key":"34_CR37","doi-asserted-by":"publisher","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","volume":"70","author":"GB Huang","year":"2006","unstructured":"Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1\u20133), 489\u2013501 (2006)","journal-title":"Neurocomputing"},{"issue":"4","key":"34_CR38","doi-asserted-by":"publisher","first-page":"879","DOI":"10.1109\/TNN.2006.875977","volume":"17","author":"GB Huang","year":"2006","unstructured":"Huang, G.B., Chen, L., Siew, C.K., et al.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 17(4), 879\u2013892 (2006)","journal-title":"IEEE Trans. Neural Networks"},{"issue":"8","key":"34_CR39","doi-asserted-by":"publisher","first-page":"1352","DOI":"10.1109\/TNN.2009.2024147","volume":"20","author":"G Feng","year":"2009","unstructured":"Feng, G., Huang, G.B., Lin, Q., Gay, R.: Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Networks 20(8), 1352\u20131357 (2009)","journal-title":"IEEE Trans. Neural Networks"},{"key":"34_CR40","doi-asserted-by":"publisher","first-page":"134","DOI":"10.1016\/j.neucom.2015.01.097","volume":"174","author":"Z Xu","year":"2016","unstructured":"Xu, Z., Yao, M., Wu, Z., Dai, W.: Incremental regularized extreme learning machine and it\u2019s enhancement. Neurocomputing 174, 134\u2013142 (2016)","journal-title":"Neurocomputing"},{"issue":"1","key":"34_CR41","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1016\/j.ins.2011.09.015","volume":"185","author":"J Cao","year":"2012","unstructured":"Cao, J., Lin, Z., Huang, G.B., Liu, N.: Voting based extreme learning machine. Inf. Sci. 185(1), 66\u201377 (2012)","journal-title":"Inf. Sci."},{"issue":"6","key":"34_CR42","doi-asserted-by":"publisher","first-page":"863","DOI":"10.1109\/TEVC.2017.2688863","volume":"21","author":"A Rosales-Perez","year":"2017","unstructured":"Rosales-Perez, A., Garcia, S., Gonzalez, J.A., Coello, C.A.C., Herrera, F.: An evolutionary multi-objective model and instance selection for support vector machines with Pareto-based ensembles. IEEE Trans. Evol. Comput. 21(6), 863\u2013877 (2017)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"16","key":"34_CR43","doi-asserted-by":"publisher","first-page":"887","DOI":"10.1016\/j.ipl.2009.03.029","volume":"109","author":"J Garc\u00eda-Nieto","year":"2009","unstructured":"Garc\u00eda-Nieto, J., Alba, E., Jourdan, L., Talbi, E.: Sensitivity and specificity based multiobjective approach for feature selection: application to cancer diagnosis. Inf. Process. Lett. 109(16), 887\u2013896 (2009)","journal-title":"Inf. Process. Lett."},{"issue":"3","key":"34_CR44","first-page":"27","volume":"2","author":"CC Chang","year":"2011","unstructured":"Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"}],"container-title":["Communications in Computer and Information Science","Bio-inspired Computing: Theories and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-15-3425-6_34","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,4,2]],"date-time":"2020-04-02T01:33:10Z","timestamp":1585791190000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-981-15-3425-6_34"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9789811534249","9789811534256"],"references-count":44,"URL":"https:\/\/doi.org\/10.1007\/978-981-15-3425-6_34","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"2 April 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BIC-TA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Bio-Inspired Computing: Theories and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Zhengzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 November 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bicta2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2019.bicta.org","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"197","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"121","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}