{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T18:32:06Z","timestamp":1726079526677},"publisher-location":"Singapore","reference-count":25,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811534140"},{"type":"electronic","value":"9789811534157"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-981-15-3415-7_46","type":"book-chapter","created":{"date-parts":[[2020,4,1]],"date-time":"2020-04-01T19:02:58Z","timestamp":1585767778000},"page":"550-564","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Chromosome Medial Axis Extraction Method Based on Graphic Geometry and Competitive Extreme Learning Machines Teams (CELMT) Classifier for Chromosome Classification"],"prefix":"10.1007","author":[{"given":"Jie","family":"Wang","sequence":"first","affiliation":[]},{"given":"Chaohao","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Caitong","family":"Yue","sequence":"additional","affiliation":[]},{"given":"Xiangyang","family":"Ren","sequence":"additional","affiliation":[]},{"given":"Ke","family":"Bai","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,4,2]]},"reference":[{"key":"46_CR1","doi-asserted-by":"crossref","unstructured":"Nair, R.M., Remya, R., Sabeena, K.: Karyotyping techniques of chromosomes: a survey. Int. J. Comput. Trends Technol. 22(1) (2015)","DOI":"10.14445\/22312803\/IJCTT-V22P107"},{"issue":"6","key":"46_CR2","doi-asserted-by":"publisher","first-page":"98","DOI":"10.11648\/j.ajbls.20160406.13","volume":"4","author":"K Gadhia Pankaj","year":"2016","unstructured":"Gadhia Pankaj, K., Patel Monika, V., Vaniawala Salil, N.: Role of cytogenetic evaluation in diagnosis of acute myeloid leukemia. Am. J. Biomed. Life Sci. 4(6), 98\u2013102 (2016)","journal-title":"Am. J. Biomed. Life Sci."},{"key":"46_CR3","doi-asserted-by":"crossref","unstructured":"Ventura, R., Khmelinskii, A., Sanches, J.M.: Classifier-assisted metric for chromosome pairing. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 6729\u20136732. IEEE (2010)","DOI":"10.1109\/IEMBS.2010.5626237"},{"issue":"4","key":"46_CR4","doi-asserted-by":"publisher","first-page":"544","DOI":"10.1109\/3477.704293","volume":"28","author":"B Lerner","year":"1998","unstructured":"Lerner, B.: Toward a completely automatic neural-network-based human chromosome analysis. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 28(4), 544\u2013552 (1998)","journal-title":"IEEE Trans. Syst. Man Cybern. Part B (Cybern.)"},{"issue":"15","key":"46_CR5","doi-asserted-by":"publisher","first-page":"2536","DOI":"10.1088\/0022-3727\/38\/15\/003","volume":"38","author":"X Wang","year":"2005","unstructured":"Wang, X., Zheng, B., Wood, M., Li, S., Chen, W., Liu, H.: Development and evaluation of automated systems for detection and classification of banded chromosomes: current status and future perspectives. J. Phys. D: Appl. Phys. 38(15), 2536 (2005)","journal-title":"J. Phys. D: Appl. Phys."},{"key":"46_CR6","unstructured":"Wu, Q., Castleman, K.R.: Automated chromosome classification using wavelet-based band pattern descriptors. In: Proceedings 13th IEEE Symposium on Computer-Based Medical Systems, CBMS 2000, pp. 189\u2013194. IEEE (2000)"},{"key":"46_CR7","doi-asserted-by":"crossref","unstructured":"Minaee, S., Fotouhi, M., Khalaj, B.H.: A geometric approach to fully automatic chromosome segmentation. In: 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1\u20136. IEEE (2014)","DOI":"10.1109\/SPMB.2014.7163174"},{"key":"46_CR8","unstructured":"Moradi, M., Setarehdan, S., Ghaffari, S.: Automatic landmark detection on chromosomes\u2019 images for feature extraction purposes. In: Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, ISPA 2003, vol. 1, pp. 567\u2013570. IEEE (2003)"},{"issue":"3","key":"46_CR9","doi-asserted-by":"publisher","first-page":"242","DOI":"10.1002\/cyto.990100303","volume":"10","author":"J Piper","year":"1989","unstructured":"Piper, J., Granum, E.: On fully automatic feature measurement for banded chromosome classification. Cytom.: J. Int. Soc. Anal. Cytol. 10(3), 242\u2013255 (1989)","journal-title":"Cytom.: J. Int. Soc. Anal. Cytol."},{"issue":"3","key":"46_CR10","doi-asserted-by":"publisher","first-page":"451","DOI":"10.1109\/42.712134","volume":"17","author":"RJ Stanley","year":"1998","unstructured":"Stanley, R.J., Keller, J.M., Gader, P., Caldwell, C.W.: Data-driven homologue matching for chromosome identification. IEEE Trans. Med. Imaging 17(3), 451\u2013462 (1998)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"46_CR11","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1016\/j.patcog.2007.05.016","volume":"41","author":"JH Kao","year":"2008","unstructured":"Kao, J.H., Chuang, J.H., Wang, T.: Chromosome classification based on the band profile similarity along approximate medial axis. Pattern Recognit. 41(1), 77\u201389 (2008)","journal-title":"Pattern Recognit."},{"issue":"1","key":"46_CR12","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1016\/j.patrec.2005.06.011","volume":"27","author":"M Moradi","year":"2006","unstructured":"Moradi, M., Setarehdan, S.K.: New features for automatic classification of human chromosomes: a feasibility study. Pattern Recogn. Lett. 27(1), 19\u201328 (2006)","journal-title":"Pattern Recogn. Lett."},{"issue":"2","key":"46_CR13","doi-asserted-by":"publisher","first-page":"120","DOI":"10.1016\/j.cmpb.2011.07.013","volume":"105","author":"E Poletti","year":"2012","unstructured":"Poletti, E., Grisan, E., Ruggeri, A.: A modular framework for the automatic classification of chromosomes in q-band images. Comput. Methods Programs Biomed. 105(2), 120\u2013130 (2012)","journal-title":"Comput. Methods Programs Biomed."},{"issue":"1","key":"46_CR14","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.cmpb.2007.10.013","volume":"89","author":"X Wang","year":"2008","unstructured":"Wang, X., Zheng, B., Li, S., Mulvihill, J.J., Liu, H.: A rule-based computer scheme for centromere identification and polarity assignment of metaphase chromosomes. Comput. Methods Programs Biomed. 89(1), 33\u201342 (2008)","journal-title":"Comput. Methods Programs Biomed."},{"issue":"1","key":"46_CR15","doi-asserted-by":"publisher","first-page":"22","DOI":"10.1016\/j.jbi.2008.05.004","volume":"42","author":"X Wang","year":"2009","unstructured":"Wang, X., Zheng, B., Li, S., Mulvihill, J.J., Wood, M.C., Liu, H.: Automated classification of metaphase chromosomes: optimization of an adaptive computerized scheme. J. Biomed. Inform. 42(1), 22\u201331 (2009)","journal-title":"J. Biomed. Inform."},{"key":"46_CR16","doi-asserted-by":"publisher","first-page":"224","DOI":"10.1016\/j.eswa.2017.05.070","volume":"86","author":"AO Kusakci","year":"2017","unstructured":"Kusakci, A.O., Ayvaz, B., Karakaya, E.: Towards an autonomous human chromosome classification system using competitive support vector machines teams (CSVMT). Expert Syst. Appl. 86, 224\u2013234 (2017)","journal-title":"Expert Syst. Appl."},{"issue":"7","key":"46_CR17","doi-asserted-by":"publisher","first-page":"959","DOI":"10.1088\/0031-9155\/38\/7\/006","volume":"38","author":"AM Jennings","year":"1993","unstructured":"Jennings, A.M., Graham, J.: A neural network approach to automatic chromosome classification. Phys. Med. Biol. 38(7), 959 (1993)","journal-title":"Phys. Med. Biol."},{"issue":"1","key":"46_CR18","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1002\/cyto.990160104","volume":"16","author":"WP Sweeney Jr","year":"1994","unstructured":"Sweeney Jr., W.P., Musavi, M.T., Guidi, J.N.: Classification of chromosomes using a probabilistic neural network. Cytom.: J. Int. Soc. Anal. Cytol. 16(1), 17\u201324 (1994)","journal-title":"Cytom.: J. Int. Soc. Anal. Cytol."},{"key":"46_CR19","doi-asserted-by":"crossref","unstructured":"Sharma, M., Vig, L., et al.: Automatic chromosome classification using deep attention based sequence learning of chromosome bands. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20138. IEEE (2018)","DOI":"10.1109\/IJCNN.2018.8489321"},{"key":"46_CR20","doi-asserted-by":"crossref","unstructured":"Gagula-Palalic, S., Can, M.: Human chromosome classification using competitive neural network teams (CNNT) and nearest neighbor. In: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 626\u2013629. IEEE (2014)","DOI":"10.1109\/BHI.2014.6864442"},{"key":"46_CR21","doi-asserted-by":"crossref","unstructured":"Uttamatanin, R., Yuvapoositanon, P., Intarapanich, A., Kaewkamnerd, S., Tongsima, S.: Band classification based on chromosome shapes. In: The 6th 2013 Biomedical Engineering International Conference, pp. 1\u20135. IEEE (2013)","DOI":"10.1109\/BMEiCon.2013.6687672"},{"issue":"5","key":"46_CR22","doi-asserted-by":"publisher","first-page":"473","DOI":"10.1089\/cmb.2018.0212","volume":"26","author":"X Hu","year":"2019","unstructured":"Hu, X., et al.: Classification of metaphase chromosomes using deep convolutional neural network. J. Comput. Biol. 26(5), 473\u2013484 (2019)","journal-title":"J. Comput. Biol."},{"issue":"3","key":"46_CR23","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1145\/357994.358023","volume":"27","author":"T Zhang","year":"1984","unstructured":"Zhang, T., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236\u2013239 (1984)","journal-title":"Commun. ACM"},{"issue":"1\u20133","key":"46_CR24","doi-asserted-by":"publisher","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","volume":"70","author":"GB Huang","year":"2006","unstructured":"Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1\u20133), 489\u2013501 (2006)","journal-title":"Neurocomputing"},{"key":"46_CR25","unstructured":"Faculty of computer science and mathematics. \nhttp:\/\/www.fim.uni-passau.de\/en\/faculty\/former-professors\/mathematical-stochastics\/chromosome-image-data\n\n. Accessed 10 Oct 2019"}],"container-title":["Communications in Computer and Information Science","Bio-inspired Computing: Theories and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-15-3415-7_46","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,4,2]],"date-time":"2020-04-02T01:27:01Z","timestamp":1585790821000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-981-15-3415-7_46"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9789811534140","9789811534157"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-981-15-3415-7_46","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"2 April 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BIC-TA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Bio-Inspired Computing: Theories and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Zhengzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 November 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 November 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bicta2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2019.bicta.org","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"197","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"121","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"61% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}