{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T22:53:43Z","timestamp":1743029623046,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":21,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811513763"},{"type":"electronic","value":"9789811513770"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-981-15-1377-0_55","type":"book-chapter","created":{"date-parts":[[2019,11,13]],"date-time":"2019-11-13T07:03:36Z","timestamp":1573628616000},"page":"709-722","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A High Accuracy Nonlinear Dimensionality Reduction Optimization Method"],"prefix":"10.1007","author":[{"given":"Zhitong","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Jiantao","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Haifeng","family":"Xing","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,11,14]]},"reference":[{"key":"55_CR1","doi-asserted-by":"publisher","unstructured":"Huang, D., Zhang, D., Liu, Y., Zhang, S., Zhu, W.: A KPCA based fault detection approach for feed water treatment process of coal-fired power plant. In: Proceeding of the 11th World Congress on Intelligent Control and Automation, pp. 3222\u20133227. IEEE, Shenyang (2014). \nhttps:\/\/doi.org\/10.1109\/WCICA.2014.7053247","DOI":"10.1109\/WCICA.2014.7053247"},{"issue":"3","key":"55_CR2","doi-asserted-by":"publisher","first-page":"665","DOI":"10.1007\/s11771-017-3467-z","volume":"24","author":"X Wang","year":"2017","unstructured":"Wang, X., Huang, L., Zhang, Y.: Modeling and monitoring of nonlinear multi-mode processes based on similarity measure-KPCA. J. Central S. Univ. 24(3), 665\u2013674 (2017). \nhttps:\/\/doi.org\/10.1007\/s11771-017-3467-z","journal-title":"J. Central S. Univ."},{"issue":"6","key":"55_CR3","doi-asserted-by":"publisher","first-page":"1999","DOI":"10.1016\/j.patcog.2014.12.012","volume":"48","author":"YA Ghassabeh","year":"2015","unstructured":"Ghassabeh, Y.A., Rudzicz, F., Moghaddam, H.A.: Fast incremental LDA feature extraction. Pattern Recogn. 48(6), 1999\u20132012 (2015). \nhttps:\/\/doi.org\/10.1016\/j.patcog.2014.12.012","journal-title":"Pattern Recogn."},{"issue":"1","key":"55_CR4","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1007\/s00500-014-1374-x","volume":"19","author":"R Fu","year":"2015","unstructured":"Fu, R., Qin, B., Liu, T.: Open-categorical text classification based on multi-LDA models. Soft. Comput. 19(1), 29\u201338 (2015)","journal-title":"Soft. Comput."},{"key":"55_CR5","doi-asserted-by":"publisher","unstructured":"Yin, S., Jing, C., Hou, J., Kaynak, O., Gao, H.: PCA and KPCA integrated support vector machine for multi-fault classification. In: IECON 2016\u201342nd Annual Conference of the IEEE Industrial Electronics Society, pp. 7215\u20137220. IEEE, Florence (2016). \nhttps:\/\/doi.org\/10.1109\/IECON.2016.7793188","DOI":"10.1109\/IECON.2016.7793188"},{"key":"55_CR6","doi-asserted-by":"publisher","unstructured":"Ibrahim, A.M., Baharudin, B.: Classification of mammogram images using shearlet transform and kernel principal component analysis. In: 2016 3rd International Conference on Computer and Information Sciences (ICCOINS), pp. 340\u2013344. IEEE, Kuala Lumpur (2016). \nhttps:\/\/doi.org\/10.1109\/ICCOINS.2016.7783238","DOI":"10.1109\/ICCOINS.2016.7783238"},{"key":"55_CR7","doi-asserted-by":"publisher","unstructured":"Chen, X., Wang, S., Ruan, X.: Recognition of partially occluded face by error detection with logarithmic operator and KPCA. In: 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)), pp. 460\u2013464. IEEEE, Datong (2016). \nhttps:\/\/doi.org\/10.1109\/CISP-BMEI.2016.7852755","DOI":"10.1109\/CISP-BMEI.2016.7852755"},{"key":"55_CR8","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1016\/j.ijms.2016.06.002","volume":"406","author":"SK Jha","year":"2016","unstructured":"Jha, S.K., Josheski, F., Marina, N., Hayashi, K.: GC-MS characterization of body odour for identification using artificial neural network classifiers fusion. Int. J. Mass Spectrom. 406, 35\u201347 (2016). \nhttps:\/\/doi.org\/10.1016\/j.ijms.2016.06.002","journal-title":"Int. J. Mass Spectrom."},{"issue":"11","key":"55_CR9","doi-asserted-by":"publisher","first-page":"991","DOI":"10.1007\/s12665-016-5774-3","volume":"75","author":"X Qian","year":"2016","unstructured":"Qian, X., Chen, J.-P., Xiang, L.-J., Zhang, W., Niu, C.-C.: A novel hybrid KPCA and SVM with PSO model for identifying debris flow hazard degree: a case study in Southwest China. Environ. Earth Sci. 75(11), 991 (2016). \nhttps:\/\/doi.org\/10.1007\/s12665-016-5774-3","journal-title":"Environ. Earth Sci."},{"issue":"2","key":"55_CR10","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1002\/ima.22217","volume":"27","author":"S Alam","year":"2017","unstructured":"Alam, S., Kwon, G.-R.: The Alzheimer\u2019s disease neuroimaging initiative: Alzheimer disease classification using KPCA, LDA, and multi-kernel learning SVM. Int. J. Imaging Syst. Technol. 27(2), 133\u2013143 (2017). \nhttps:\/\/doi.org\/10.1002\/ima.22217","journal-title":"Int. J. Imaging Syst. Technol."},{"key":"55_CR11","unstructured":"Mei, C., Yang, M., Shu, D., Hui, J., Liu, G.: Monitoring wheat straw fermentation process using electronic nose with pattern recognition methods. Anal. Methods 7(13), 6006\u20136011 (2015)"},{"key":"55_CR12","unstructured":"Urmila, K., Chen, Q., Li, H., Zhao, J., Hui, Z.: Quantifying of total volatile basic nitrogen (TVB-N) content in chicken using a colorimetric sensor array and nonlinear regression tool. Anal. Methods 7, 5682\u20135688 (2015)"},{"key":"55_CR13","doi-asserted-by":"publisher","unstructured":"Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R.: Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No. 98TH8468), pp. 41\u201348. IEEE, Madison (1999). \nhttps:\/\/doi.org\/10.1109\/NNSP.1999.788121","DOI":"10.1109\/NNSP.1999.788121"},{"key":"55_CR14","unstructured":"Deng, M., Chen, X., Chen, T.X., Wang, H.R., Lu, H.-X.: Improved kernel principal component analysis based on a clustering algorithm. CAAI Trans. Intell. Syst. (2010)"},{"key":"55_CR15","unstructured":"Han, Z.S., Li, Y., Zhang, Y.N.: A comparative study on face recognition using LDA-based algorithm. Microelectron. Comput. (2005)"},{"key":"55_CR16","doi-asserted-by":"publisher","unstructured":"Shermina, J.: Illumination invariant face recognition using discrete cosine transform and principal component analysis. In: 2011 International Conference on Emerging Trends in Electrical and Computer Technology, Nagercoil, pp. 826\u2013830. IEEE, Nagercoil (2011). \nhttps:\/\/doi.org\/10.1109\/ICETECT.2011.5760233","DOI":"10.1109\/ICETECT.2011.5760233"},{"key":"55_CR17","unstructured":"Xie, Y.L.: LDA algorithm and its application to face recognition. Comput. Eng. Appl. (2010)"},{"issue":"5","key":"55_CR18","doi-asserted-by":"publisher","first-page":"847","DOI":"10.1109\/TPAMI.2009.100","volume":"32","author":"R Jenssen","year":"2010","unstructured":"Jenssen, R.: Kernel entropy component analysis. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 847\u2013860 (2010). \nhttps:\/\/doi.org\/10.1109\/TPAMI.2009.100","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"55_CR19","series-title":"Lecture Notes in Networks and Systems","doi-asserted-by":"publisher","first-page":"474","DOI":"10.1007\/978-3-319-69137-4_42","volume-title":"Advanced Information Technology, Services and Systems","author":"K El Haimoudi","year":"2018","unstructured":"El Haimoudi, K., Issati, I., Daanoun, A.: The particularities of the counter propagation neural network application in pattern recognition tasks. In: Ezziyyani, M., Bahaj, M., Khoukhi, F. (eds.) AIT2S 2017. LNNS, vol. 25, pp. 474\u2013487. Springer, Cham (2018). \nhttps:\/\/doi.org\/10.1007\/978-3-319-69137-4_42"},{"issue":"1","key":"55_CR20","doi-asserted-by":"publisher","first-page":"015501","DOI":"10.1063\/1.4940408","volume":"8","author":"P Jiang","year":"2016","unstructured":"Jiang, P., Ge, Y., Wang, C.: Research and application of a hybrid forecasting model based on simulated annealing algorithm: a case study of wind speed forecasting. J. Renew. Sustain. Energy 8(1), 015501 (2016). \nhttps:\/\/doi.org\/10.1063\/1.4940408","journal-title":"J. Renew. Sustain. Energy"},{"key":"55_CR21","doi-asserted-by":"publisher","unstructured":"Ashiquzzaman, A., Tushar, A.K.: Handwritten Arabic numeral recognition using deep learning neural networks. In: 2017 IEEE International Conference on Imaging, Vision Pattern Recognition (icIVPR), pp. 1\u20134. IEEE, Dhaka (2017). \nhttps:\/\/doi.org\/10.1109\/ICIVPR.2017.7890866","DOI":"10.1109\/ICIVPR.2017.7890866"}],"container-title":["Communications in Computer and Information Science","Computer Supported Cooperative Work and Social Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-15-1377-0_55","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,7,14]],"date-time":"2020-07-14T15:23:13Z","timestamp":1594740193000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-981-15-1377-0_55"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9789811513763","9789811513770"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-981-15-1377-0_55","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"14 November 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ChineseCSCW","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"CCF Conference on Computer Supported Cooperative Work and Social Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Kunming","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2019","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 August 2019","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 August 2019","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"chinesecscw2019","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.scholat.com\/confweb\/CCSCW2019","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}