{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T08:44:48Z","timestamp":1726044288866},"publisher-location":"Singapore","reference-count":17,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811389498"},{"type":"electronic","value":"9789811389504"}],"license":[{"start":{"date-parts":[[2019,9,19]],"date-time":"2019-09-19T00:00:00Z","timestamp":1568851200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-981-13-8950-4_28","type":"book-chapter","created":{"date-parts":[[2019,9,18]],"date-time":"2019-09-18T09:04:58Z","timestamp":1568797498000},"page":"305-311","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["DNA Microarray Classification: Evolutionary Optimization of Neural Network Hyper-parameters"],"prefix":"10.1007","author":[{"given":"Pietro","family":"Barbiero","sequence":"first","affiliation":[]},{"given":"Andrea","family":"Bertotti","sequence":"additional","affiliation":[]},{"given":"Gabriele","family":"Ciravegna","sequence":"additional","affiliation":[]},{"given":"Giansalvo","family":"Cirrincione","sequence":"additional","affiliation":[]},{"given":"Elio","family":"Piccolo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,9,19]]},"reference":[{"key":"28_CR1","doi-asserted-by":"publisher","first-page":"998","DOI":"10.1158\/2159-8290.CD-14-0001","volume":"4","author":"M Hidalgo","year":"2014","unstructured":"Hidalgo, M., et al.: Patient-derived Xenograft models: An emerging platform for translational cancer research. Cancer Discov. 4, 998\u20131013 (2014)","journal-title":"Cancer Discov."},{"key":"28_CR2","doi-asserted-by":"publisher","first-page":"338","DOI":"10.1038\/nrclinonc.2012.61","volume":"9","author":"JJ Tentler","year":"2012","unstructured":"Tentler, J.J., et al.: Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338\u2013350 (2012)","journal-title":"Nat. Rev. Clin. Oncol."},{"key":"28_CR3","doi-asserted-by":"publisher","DOI":"10.1038\/nrc.2016.140","author":"AT Byrne","year":"2017","unstructured":"Byrne, A.T., et al.: Interrogating open issues in cancer precision medicine with patient derived xenografts. Nat. Rev. Cancer (2017). \n https:\/\/doi.org\/10.1038\/nrc.2016.140","journal-title":"Nat. Rev. Cancer"},{"key":"28_CR4","doi-asserted-by":"publisher","first-page":"508","DOI":"10.1158\/2159-8290.CD-11-0109","volume":"1","author":"A Bertotti","year":"2011","unstructured":"Bertotti, A., et al.: A molecularly annotated platform of patient-derived xenografts (\u2018xenopatients\u2019) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508\u2013523 (2011)","journal-title":"Cancer Discov."},{"issue":"272","key":"28_CR5","doi-asserted-by":"publisher","first-page":"272ra12","DOI":"10.1126\/scitranslmed.3010445","volume":"7","author":"Eugenia R. Zanella","year":"2015","unstructured":"Zanella, E.R., et al.: IGF2 is an actionable target that identifies a distinct subpopulation of colorectal cancer patients with marginal response to anti-EGFR therapies. Sci. Transl. Med. 7, (2015)","journal-title":"Science Translational Medicine"},{"key":"28_CR6","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1038\/nature14969","volume":"526","author":"A Bertotti","year":"2015","unstructured":"Bertotti, A., et al.: The genomic landscape of response to EGFR blockade in colorectal cancer. Nature 526, 263\u20137 (2015)","journal-title":"Nature"},{"key":"28_CR7","unstructured":"Sartore Bianchi, A. et\u00a0al., Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12\/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 17, 738\u2013746 (2016)"},{"key":"28_CR8","doi-asserted-by":"publisher","first-page":"219","DOI":"10.1007\/978-3-319-95095-2_21","volume-title":"Quantifying and Processing Biomedical and Behavioral Signals","author":"P. Barbiero","year":"2018","unstructured":"Barbiero P., Bertotti A., Ciravegna G., Cirrincione G., Pasero E., Piccolo E.: Supervised gene identification in colorectal cancer. In: Quantifying and Processing Biomedical and Behavioral Signals. Springer (2018). ISBN 9783319950945. \n https:\/\/doi.org\/10.1007\/978-3-319-95095-2_21"},{"key":"28_CR9","unstructured":"Illumina: Array-based gene expression analysis. Data Sheet Gene Expr. (2011). \n http:\/\/res.illumina.com\/documents\/products\/datasheets\/datasheet_gene_exp_analysis.pdf"},{"key":"28_CR10","doi-asserted-by":"publisher","unstructured":"Isella, C., et al.: Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancer. Nat. Gen. 8, (2017). \n https:\/\/doi.org\/10.1038\/ncomms15107","DOI":"10.1038\/ncomms15107"},{"key":"28_CR11","doi-asserted-by":"crossref","unstructured":"Bevilacqua, V., Mastronardi, G., Menolascina, F.: Genetic algorithm and neural network based classification in microarray data analysis with biological validity assessment. In: International Conference on Intelligent Computing, pp. 475\u2013484. Springer (2006)","DOI":"10.1007\/11816102_51"},{"key":"28_CR12","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1016\/B978-0-444-89958-3.50013-9","volume-title":"Neurobionics","author":"Bernard Widrow","year":"1993","unstructured":"Widrow, B., Lehr, M.A.: Artificial Neural Networks of the perceptron, madaline, and backpropagation family. In: Neurobionics (1993). \n https:\/\/doi.org\/10.1016\/B978-0-444-89958-3.50013-9"},{"key":"28_CR13","unstructured":"Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall (1998). ISBN 0132733501"},{"key":"28_CR14","unstructured":"Chollet, F., et\u00a0al.: Keras (2015). \n https:\/\/keras.io"},{"key":"28_CR15","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations (2017). \n arXiv:1412.6980v9"},{"issue":"3","key":"28_CR16","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1007\/BF03024314","volume":"18","author":"Z Michalewicz","year":"1996","unstructured":"Michalewicz, Z., Hartley, S.J.: Genetic algorithms + data structures = evolution programs. Math. Intell. 18(3), 71 (1996)","journal-title":"Math. Intell."},{"key":"28_CR17","unstructured":"Garrett, A.: Inspyred: bio-inspired algorithms in python (2014). \n https:\/\/pypi.python.org\/pypi\/inspyred\n \n (visited on 11\/28\/2016)"}],"container-title":["Smart Innovation, Systems and Technologies","Neural Approaches to Dynamics of Signal Exchanges"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-13-8950-4_28","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,18]],"date-time":"2019-09-18T09:09:27Z","timestamp":1568797767000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-981-13-8950-4_28"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,9,19]]},"ISBN":["9789811389498","9789811389504"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-981-13-8950-4_28","relation":{},"ISSN":["2190-3018","2190-3026"],"issn-type":[{"type":"print","value":"2190-3018"},{"type":"electronic","value":"2190-3026"}],"subject":[],"published":{"date-parts":[[2019,9,19]]},"assertion":[{"value":"19 September 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}}]}}