{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T11:41:41Z","timestamp":1743075701950,"version":"3.40.3"},"publisher-location":"Singapore","reference-count":22,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811360510"},{"type":"electronic","value":"9789811360527"}],"license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-981-13-6052-7_47","type":"book-chapter","created":{"date-parts":[[2019,3,11]],"date-time":"2019-03-11T12:04:19Z","timestamp":1552305859000},"page":"548-559","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Machine Learning for Analyzing Gait in Parkinson\u2019s Patients Using Wearable Force Sensors"],"prefix":"10.1007","author":[{"given":"Asma","family":"Channa","sequence":"first","affiliation":[]},{"given":"Rahime","family":"Ceylan","sequence":"additional","affiliation":[]},{"given":"Attiya","family":"Baqai","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,3,12]]},"reference":[{"key":"47_CR1","doi-asserted-by":"crossref","first-page":"904","DOI":"10.1016\/j.cmpb.2014.01.004","volume":"113","author":"M Hariharan","year":"2014","unstructured":"Hariharan, M., Polat, K., Sindhu, R.: A new hybrid intelligent system for accurate detection of Parkinson\u2019s disease. Comput. Methods Programs Biomed. 113, 904\u2013913 (2014)","journal-title":"Comput. Methods Programs Biomed."},{"key":"47_CR2","doi-asserted-by":"crossref","first-page":"656","DOI":"10.1002\/ana.20452","volume":"57","author":"M Plotnik","year":"2005","unstructured":"Plotnik, M., Giladi, N., Balash, Y., Peretz, C., Hausdorff, J.M.: Is freezing of gait in Parkinson\u2019s disease related to asymmetric motor function? Ann. Neurol. 57, 656\u2013663 (2005)","journal-title":"Ann. Neurol."},{"key":"47_CR3","doi-asserted-by":"crossref","first-page":"2255","DOI":"10.3390\/s120202255","volume":"12","author":"W Tao","year":"2012","unstructured":"Tao, W., Liu, T., Zheng, R., Feng, H.: Gait analysis using wearable sensors. Sensors 12, 2255\u20132283 (2012)","journal-title":"Sensors"},{"key":"47_CR4","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.maturitas.2017.03.317","volume":"100","author":"A Godfrey","year":"2017","unstructured":"Godfrey, A.: Wearables for independent living in older adults: gait and falls. Maturitas 100, 16\u201326 (2017)","journal-title":"Maturitas"},{"key":"47_CR5","doi-asserted-by":"crossref","first-page":"2123","DOI":"10.3174\/ajnr.A3126","volume":"33","author":"S Haller","year":"2012","unstructured":"Haller, S., Badoud, S., Nguyen, D., Garibotto, V., Lovblad, K., Burkhard, P.: Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. Am. J. Neuroradiol. 33, 2123\u20132128 (2012)","journal-title":"Am. J. Neuroradiol."},{"key":"47_CR6","doi-asserted-by":"crossref","unstructured":"Das, S., et al.: Quantitative measurement of motor symptoms in Parkinson\u2019s disease: a study with full-body motion capture data. In: 2011 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC), pp. 6789\u20136792 (2011)","DOI":"10.1109\/IEMBS.2011.6091674"},{"key":"47_CR7","doi-asserted-by":"crossref","first-page":"986","DOI":"10.3390\/app7100986","volume":"7","author":"BM Eskofier","year":"2017","unstructured":"Eskofier, B.M., et al.: An overview of smart shoes in the internet of health things: gait and mobility assessment in health promotion and disease monitoring. Appl. Sci. 7, 986 (2017)","journal-title":"Appl. Sci."},{"key":"47_CR8","doi-asserted-by":"crossref","unstructured":"Soubra, R., Diab, M.O., Moslem, B.: Identification of Parkinson\u2019s disease by using multichannel vertical ground reaction force signals. In: 2016 International Conference on Bio-engineering for Smart Technologies (BioSMART), pp. 1\u20134 (2016)","DOI":"10.1109\/BIOSMART.2016.7835604"},{"key":"47_CR9","doi-asserted-by":"crossref","unstructured":"Perumal, S.V., Sankar, R.: Gait monitoring system for patients with Parkinson\u2019s disease using wearable sensors. In: 2016 IEEE on Healthcare Innovation Point-of-Care Technologies Conference (HI-POCT), pp. 21\u201324 (2016)","DOI":"10.1109\/HIC.2016.7797687"},{"key":"47_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"344","DOI":"10.1007\/978-3-319-59147-6_30","volume-title":"Advances in Computational Intelligence","author":"J Camps","year":"2017","unstructured":"Camps, J., et al.: Deep learning for detecting freezing of gait episodes in Parkinson\u2019s disease based on accelerometers. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 344\u2013355. Springer, Cham (2017). \n https:\/\/doi.org\/10.1007\/978-3-319-59147-6_30"},{"key":"47_CR11","doi-asserted-by":"crossref","unstructured":"Tahafchi, P., et al.: Freezing-of-gait detection using temporal, spatial, and physiological features with a support-vector-machine classifier. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2867\u20132870 (2017)","DOI":"10.1109\/EMBC.2017.8037455"},{"key":"47_CR12","doi-asserted-by":"crossref","first-page":"180","DOI":"10.3923\/jas.2012.180.185","volume":"12","author":"NM Tahir","year":"2012","unstructured":"Tahir, N.M., Manap, H.H.: Parkinson disease gait classification based on machine learning approach. J. Appl. Sci. 12, 180\u2013185 (2012)","journal-title":"J. Appl. Sci."},{"key":"47_CR13","doi-asserted-by":"crossref","unstructured":"Manap, H.H., Tahir, N.M., Yassin, A.I.M.: Statistical analysis of parkinson disease gait classification using artificial neural network. In: 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 060\u2013065 (2011)","DOI":"10.1109\/ISSPIT.2011.6151536"},{"key":"47_CR14","doi-asserted-by":"crossref","unstructured":"Gabel, M., Gilad-Bachrach, R., Renshaw, R., Schuster, A.: Full body gait analysis with Kinect. In: 2012 Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (EMBC), pp. 1964\u20131967 (2012)","DOI":"10.1109\/EMBC.2012.6346340"},{"key":"47_CR15","first-page":"e215","volume":"101","author":"AL Goldberger","year":"2000","unstructured":"Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet. Circulation 101, e215\u2013e220 (2000)","journal-title":"Circulation"},{"key":"47_CR16","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.parkreldis.2010.10.002","volume":"17","author":"A Hoorn van der","year":"2011","unstructured":"van der Hoorn, A., Bartels, A.L., Leenders, K.L., de Jong, B.M.: Handedness and dominant side of symptoms in Parkinson\u2019s disease. Parkinsonism Relat. Disord. 17, 58\u201360 (2011)","journal-title":"Parkinsonism Relat. Disord."},{"key":"47_CR17","unstructured":"Infotronic.nl - infotronic Resources and Information. \n http:\/\/www.infotronic.nl\/#CDG"},{"key":"47_CR18","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1007\/s11062-013-9335-z","volume":"45","author":"Y Rong","year":"2013","unstructured":"Rong, Y., Hao, D., Han, X., Zhang, Y., Zhang, J., Zeng, Y.: Classification of surface EMGs using wavelet packet energy analysis and a genetic algorithm-based support vector machine. Neurophysiology 45, 39\u201348 (2013)","journal-title":"Neurophysiology"},{"key":"47_CR19","unstructured":"Polikar, R.: The wavelet tutorial (1996)"},{"key":"47_CR20","unstructured":"Wavelet Packets Transform-Mathswork. \n https:\/\/www.mathworks.com\/help\/wavelet\/ug\/wavelet-packets.html\n \n . Accessed 24 Jan 2018"},{"key":"47_CR21","unstructured":"Support Vector Machine for Binary Classification. \n http:\/\/www.mathworks.com\/help\/stats\/support-vector-machines-for-binaryclassification.html\n \n . Accessed 24 Jan 2018"},{"key":"47_CR22","unstructured":"Train Classification Models in Classification Learner App. \n https:\/\/www.mathworks.com\/help\/stats\/train-classification-models-in-classification-learner-app.html\n \n . Accessed 24 Jan 2018"}],"container-title":["Communications in Computer and Information Science","Intelligent Technologies and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-13-6052-7_47","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,21]],"date-time":"2019-05-21T00:07:37Z","timestamp":1558397257000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-981-13-6052-7_47"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"ISBN":["9789811360510","9789811360527"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-981-13-6052-7_47","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"12 March 2019","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"INTAP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Technologies and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bahawalpur","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pakistan","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 October 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"intap2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/jdconline.net\/intap\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}