{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T18:00:14Z","timestamp":1725991214691},"publisher-location":"Singapore","reference-count":27,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811324222"},{"type":"electronic","value":"9789811324239"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-981-13-2423-9_13","type":"book-chapter","created":{"date-parts":[[2018,9,12]],"date-time":"2018-09-12T07:37:42Z","timestamp":1536737862000},"page":"168-178","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["An Experimental Perspective for Computation-Efficient Neural Networks Training"],"prefix":"10.1007","author":[{"given":"Lujia","family":"Yin","sequence":"first","affiliation":[]},{"given":"Xiaotao","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Zheng","family":"Qin","sequence":"additional","affiliation":[]},{"given":"Zhaoning","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jinghua","family":"Feng","sequence":"additional","affiliation":[]},{"given":"Dongsheng","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,9,13]]},"reference":[{"key":"13_CR1","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions, pp. 1\u20139 (2014)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"13_CR2","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Ioffe, S., Vanhoucke, V., et al.: Inception-v4, inception-resnet and the impact of residual connections on learning. AAAI, vol. 4, p. 12 (2017)","DOI":"10.1609\/aaai.v31i1.11231"},{"key":"13_CR3","doi-asserted-by":"crossref","unstructured":"Chollet, F.: Xception: deep learning with depth wise separable convolutions. arXiv preprint (2016)","DOI":"10.1109\/CVPR.2017.195"},{"key":"13_CR4","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"13_CR5","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Weinberger, K.Q., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, no. 2, p. 3 (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"13_CR6","doi-asserted-by":"crossref","unstructured":"Huang, J., Rathod, V., Sun, C., et al.: Speed\/accuracy trade-offs for modern convolutional object detectors. In: IEEE CVPR (2017)","DOI":"10.1109\/CVPR.2017.351"},{"key":"13_CR7","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)"},{"key":"13_CR8","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097\u20131105. Curran Associates Inc. (2012)"},{"key":"13_CR9","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 580\u2013587. IEEE Computer Society (2014)","DOI":"10.1109\/CVPR.2014.81"},{"issue":"6","key":"13_CR10","doi-asserted-by":"publisher","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","volume":"39","author":"S Ren","year":"2017","unstructured":"Ren, S., He, K., Girshick, R.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137\u20131149 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"13_CR11","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Computer Vision and Pattern Recognition, pp. 3431\u20133440. IEEE (2015)","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"13_CR12","unstructured":"Howard, A.G., Zhu, M., Chen, B., et al.: MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)"},{"key":"13_CR13","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., et al.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation. arXiv preprint arXiv:1801.04381 (2018)","DOI":"10.1109\/CVPR.2018.00474"},{"key":"13_CR14","doi-asserted-by":"crossref","unstructured":"Zhang, X., Zhou, X., Lin, M., et al.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083 (2017)","DOI":"10.1109\/CVPR.2018.00716"},{"key":"13_CR15","doi-asserted-by":"crossref","unstructured":"Qin, Z., Zhang, Z., Chen, X., et al.: FD-MobileNet: improved MobileNet with a fast down sampling strategy. arXiv preprint arXiv:1802.03750 (2018)","DOI":"10.1109\/ICIP.2018.8451355"},{"issue":"3","key":"13_CR16","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211\u2013252 (2015)","journal-title":"Int. J. Comput. Vis."},{"key":"13_CR17","unstructured":"Goyal, P., Doll\u00e1r, P., Girshick, R., et al.: Accurate, large minibatch SGD: training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)"},{"key":"13_CR18","doi-asserted-by":"crossref","unstructured":"You, Y., Zhang, Z., Hsieh, C.J., et al.: 100-epoch ImageNet training with AlexNet in 24 minutes. ArXiv e-prints (2017)","DOI":"10.1145\/3225058.3225069"},{"key":"13_CR19","unstructured":"Gysel, P., Motamedi, M., Ghiasi, S.: Hardware-oriented approximation of convolutional neural networks (2016)"},{"key":"13_CR20","doi-asserted-by":"crossref","unstructured":"Mathew, M., Desappan, K., Swami, P.K., et al.: Sparse, quantized, full frame CNN for low power embedded devices. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 328\u2013336. IEEE Computer Society (2017)","DOI":"10.1109\/CVPRW.2017.46"},{"key":"13_CR21","doi-asserted-by":"crossref","unstructured":"Li, M.: Scaling distributed machine learning with the parameter server, p. 1 (2014)","DOI":"10.1145\/2640087.2644155"},{"key":"13_CR22","unstructured":"Chen, T., Li, M., Li, Y., et al.: MXNet: a flexible and efficient machine learning library for heterogeneous distributed systems. Statistics (2015)"},{"key":"13_CR23","unstructured":"InfiniBand Trade Association: InfiniBand Architecture Specification: Release 1.0 (2000)"},{"key":"13_CR24","unstructured":"Padovano, M.: System and method for accessing a storage area network as network attached storage: WO, US6606690[P] (2003)"},{"issue":"3","key":"13_CR25","doi-asserted-by":"publisher","first-page":"268","DOI":"10.1145\/292395.292412","volume":"24","author":"B K\u00e5gstr\u00f6m","year":"1998","unstructured":"K\u00e5gstr\u00f6m, B., Ling, P., van Loan, C.: GEMM-based level 3 BLAS: high-performance model implementations and performance evaluation benchmark. ACM Trans. Math. Softw. (TOMS) 24(3), 268\u2013302 (1998)","journal-title":"ACM Trans. Math. Softw. (TOMS)"},{"key":"13_CR26","doi-asserted-by":"crossref","unstructured":"Williams, S., Patterson, D., Oliker, L., et al.: The roofline model: a pedagogical tool for auto-tuning kernels on multicore architectures. In: Hot Chips, vol. 20, pp. 24\u201326 (2008)","DOI":"10.1109\/HOTCHIPS.2008.7476531"},{"key":"13_CR27","unstructured":"Sifre, L.: Rigid-motion scattering for image classification. Ph.D. thesis (2014)"}],"container-title":["Communications in Computer and Information Science","Advanced Computer Architecture"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-13-2423-9_13","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:43:06Z","timestamp":1661992986000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-981-13-2423-9_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9789811324222","9789811324239"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-981-13-2423-9_13","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"ACA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Conference on Advanced Computer Architecture","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Changsha","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 August 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 August 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aca2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/aca2018.tcarch.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}