{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T19:55:34Z","timestamp":1725998134840},"publisher-location":"Singapore","reference-count":17,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811318122"},{"type":"electronic","value":"9789811318139"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-981-13-1813-9_43","type":"book-chapter","created":{"date-parts":[[2018,10,25]],"date-time":"2018-10-25T13:28:15Z","timestamp":1540474095000},"page":"433-441","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Investigation of Iterative and Direct Strategies with Recurrent Neural Networks for Short-Term Traffic Flow Forecasting"],"prefix":"10.1007","author":[{"given":"Armando","family":"Fandango","sequence":"first","affiliation":[]},{"given":"Amita","family":"Kapoor","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,10,26]]},"reference":[{"key":"43_CR1","doi-asserted-by":"publisher","first-page":"9508","DOI":"10.1109\/TVT.2016.2585575","volume":"65","author":"A Koesdwiady","year":"2016","unstructured":"Koesdwiady, A., Soua, R., Karray, F.: Improving traffic flow prediction with weather information in connected cars: a deep learning approach. IEEE Trans. Veh. Technol. 65, 9508\u20139517 (2016)","journal-title":"IEEE Trans. Veh. Technol."},{"key":"43_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.trc.2017.02.024","volume":"79","author":"NG Polson","year":"2017","unstructured":"Polson, N.G., Sokolov, V.O.: Deep learning for short-term traffic flow prediction. Transp. Res. C Emerg. Technol. 79, 1\u201317 (2017)","journal-title":"Transp. Res. C Emerg. Technol."},{"key":"43_CR3","doi-asserted-by":"crossref","unstructured":"Siripanpornchana, C., Panichpapiboon, S., Chaovalit, P.: Travel-time prediction with deep learning. In: Proceedings of the IEE Region 10 Conference (TENCON), pp. 8\u201311. IEEE Press (2016)","DOI":"10.1109\/TENCON.2016.7848343"},{"key":"43_CR4","doi-asserted-by":"publisher","first-page":"2371","DOI":"10.1109\/TNNLS.2016.2574840","volume":"28","author":"H-F Yang","year":"2017","unstructured":"Yang, H.-F., Dillon, T.S., Chen, Y.P.: Optimized structure of the traffic flow forecasting model with a deep learning approach. IEEE Trans. Neural Netw. Learn. Syst. 28, 2371\u20132381 (2017)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"43_CR5","unstructured":"Yi, H., Jung, H., Bae, S.: Deep neural networks for traffic flow prediction. In: IEEE International Conference on Big Data and Smart Computing, pp. 328\u2013331. IEEE (2017)"},{"key":"43_CR6","doi-asserted-by":"crossref","unstructured":"Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional neural network: a deep learning framework for traffic forecasting. arXiv (2017)","DOI":"10.24963\/ijcai.2018\/505"},{"key":"43_CR7","doi-asserted-by":"publisher","first-page":"20179","DOI":"10.1063\/1.4982544","volume":"1839","author":"Z Yuan","year":"2017","unstructured":"Yuan, Z., Tu, C.: Short-term traffic flow forecasting based on feature selection with mutual information. AIP Conf. Proc. 1839, 20179 (2017)","journal-title":"AIP Conf. Proc."},{"key":"43_CR8","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1016\/j.neucom.2017.03.049","volume":"247","author":"T Zhou","year":"2017","unstructured":"Zhou, T., Han, G., Xu, X., Lin, Z., Han, C., Huang, Y., Qin, J.: \u03b4-agree AdaBoost stacked autoencoder for short-term traffic flow forecasting. Neurocomputing 247, 31\u201338 (2017)","journal-title":"Neurocomputing"},{"key":"43_CR9","doi-asserted-by":"publisher","first-page":"7067","DOI":"10.1016\/j.eswa.2012.01.039","volume":"39","author":"SB Taieb","year":"2012","unstructured":"Taieb, S.B., Bontempi, G., Atiya, A.F., Sorjamaa, A.: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 39, 7067\u20137083 (2012)","journal-title":"Expert Syst. Appl."},{"key":"43_CR10","doi-asserted-by":"crossref","unstructured":"An, N.H., Anh, D.T.: Comparison of strategies for multi-step-ahead prediction of time series using neural network. In: Proceedings of the International Conference on Advanced Computing and Applications (ACOMP) 2015, pp. 142\u2013149. IEEE Press (2015)","DOI":"10.1109\/ACOMP.2015.24"},{"key":"43_CR11","doi-asserted-by":"crossref","unstructured":"Fandango, A.: Towards investigation of iterative strategy for data mining of short-term traffic flow with recurrent neural networks. In: 2nd International Conference on Information System and Data Mining (2018, accepted for publication)","DOI":"10.1145\/3206098.3206112"},{"key":"43_CR12","unstructured":"Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv (2015)"},{"key":"43_CR13","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1207\/s15516709cog1402_1","volume":"14","author":"JL Elman","year":"1990","unstructured":"Elman, J.L.: Finding structure in time. Cogn. Sci. 14, 179\u2013211 (1990)","journal-title":"Cogn. Sci."},{"key":"43_CR14","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735\u20131780 (1997)","journal-title":"Neural Comput."},{"key":"43_CR15","doi-asserted-by":"crossref","unstructured":"Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder\u2013decoder approaches. arXiv (2014)","DOI":"10.3115\/v1\/W14-4012"},{"key":"43_CR16","volume-title":"Mastering TensorFlow 1.x","author":"A Fandango","year":"2018","unstructured":"Fandango, A.: Mastering TensorFlow 1.x. Packt Publishing, Birmingham (2018)"},{"key":"43_CR17","doi-asserted-by":"crossref","unstructured":"Barros, J., Araujo, M., Rossetti, R.J.F.: Short-term real-time traffic prediction methods: a survey. In: Proceedings of the International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 132\u2013139. IEEE (2015)","DOI":"10.1109\/MTITS.2015.7223248"}],"container-title":["Communications in Computer and Information Science","Advances in Computing and Data Sciences"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-13-1813-9_43","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,28]],"date-time":"2019-10-28T09:30:43Z","timestamp":1572255043000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-981-13-1813-9_43"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9789811318122","9789811318139"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-981-13-1813-9_43","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"ICACDS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Advances in Computing and Data Sciences","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Dehradun","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"India","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 April 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 April 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icacds2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.icacds.com","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}