{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T17:14:32Z","timestamp":1725988472269},"publisher-location":"Singapore","reference-count":39,"publisher":"Springer Singapore","isbn-type":[{"type":"print","value":"9789811314704"},{"type":"electronic","value":"9789811314711"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-981-13-1471-1_11","type":"book-chapter","created":{"date-parts":[[2018,8,18]],"date-time":"2018-08-18T01:33:12Z","timestamp":1534555992000},"page":"243-267","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Comparative Study on Different Versions of Multi-Objective Genetic Algorithm for Simultaneous Gene Selection and Sample Categorization"],"prefix":"10.1007","author":[{"given":"Asit Kumar","family":"Das","sequence":"first","affiliation":[]},{"given":"Sunanda","family":"Das","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,8,19]]},"reference":[{"issue":"8","key":"11_CR2","doi-asserted-by":"publisher","first-page":"7270","DOI":"10.1016\/j.eswa.2012.01.096","volume":"39","author":"CJ Alonso-Gonzalez","year":"2012","unstructured":"C.J. Alonso-Gonzalez, Q.I. Moro-Sancho, A. Simon-Hurtado, R. Varela-Arrabal, Microarray gene expression classification with few genes: criteria to combine attribute selection and classification methods. Expert Syst. Appl. 39(8), 7270\u20137280 (2012)","journal-title":"Expert Syst. Appl."},{"issue":"452","key":"11_CR1","first-page":"1","volume":"19","author":"S Akogul","year":"2017","unstructured":"S. Akogul, M. Erisoglu, An approach for determining the number of clusters in a model-based cluster analysis. Entropy 19(452), 1\u201315 (2017)","journal-title":"Entropy"},{"issue":"6","key":"11_CR3","doi-asserted-by":"publisher","first-page":"778","DOI":"10.1109\/3477.809032","volume":"29","author":"A Baraldi","year":"1999","unstructured":"A. Baraldi, P. Blonda, A Survey of fuzzy clustering algorithms for pattern recognition\u2014part I and II. IEEE Trans. Syst. Man Cybern. B, Cybern. 29(6), 778\u2013801 (1999)","journal-title":"IEEE Trans. Syst. Man Cybern. B, Cybern."},{"key":"11_CR4","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1089\/106652700750050943","volume":"7","author":"A Bellaachia","year":"2000","unstructured":"A. Bellaachia, D. Portno, Y. Chen, A.G. Elkahloun, E-CAST: a data mining algorithm for gene expression data. J. Comput. Biol. 7, 559\u2013584 (2000)","journal-title":"J. Comput. Biol."},{"issue":"3\u20134","key":"11_CR5","doi-asserted-by":"publisher","first-page":"281","DOI":"10.1089\/106652799318274","volume":"6","author":"A Ben-Dor","year":"1999","unstructured":"A. Ben-Dor, R. Shamir, Z. Yakhini, Clustering gene expression patterns. J. Comput. Biol. 6(3\u20134), 281\u2013297 (1999)","journal-title":"J. Comput. Biol."},{"issue":"3","key":"11_CR7","doi-asserted-by":"publisher","first-page":"1","DOI":"10.14810\/ijscmc.2014.3301","volume":"3","author":"A Bhat","year":"2014","unstructured":"A. Bhat, K-Medoids clustering using partitioning around mediods performing face recognition. Int. J. Soft Comput. Math. Control (IJSCMC) 3(3), 1\u201312 (2014)","journal-title":"Int. J. Soft Comput. Math. Control (IJSCMC)"},{"key":"11_CR8","doi-asserted-by":"publisher","first-page":"549","DOI":"10.1016\/j.eswa.2016.08.021","volume":"64","author":"DN Campo","year":"2016","unstructured":"D.N. Campo, G. Stegmayer, D.H. Milone, A new index for clustering validation with overlapped clusters. Expert Syst. Appl. 64, 549\u2013556 (2016)","journal-title":"Expert Syst. Appl."},{"key":"11_CR9","first-page":"1","volume":"3","author":"RB Calinski","year":"1974","unstructured":"R.B. Calinski, J. Harabasz, A dendrite method for cluster analysis. Commun. Stat. 3, 1\u201327 (1974)","journal-title":"Commun. Stat."},{"issue":"2","key":"11_CR10","doi-asserted-by":"publisher","first-page":"224","DOI":"10.1109\/TPAMI.1979.4766909","volume":"1","author":"DL Davies","year":"1979","unstructured":"D.L. Davies, D.W. Bouldin, A cluster separation measure. IEEE Trans. Pattern Recogn. Mach. Intell. 1(2), 224\u2013227 (1979)","journal-title":"IEEE Trans. Pattern Recogn. Mach. Intell."},{"key":"11_CR11","unstructured":"K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, vol. 16 (2001)"},{"key":"11_CR12","unstructured":"K. Deb, D. Goldberg, An investigation of niche and spices formation in genetic function optimization, in Proceedings of the Third International Conference on Genetic Algorithms (1989), pp. 42\u201350"},{"key":"11_CR13","unstructured":"K. Deb, Genetic Algorithm in Multi-Modal Function Optimization, Master\u2019s Thesis, Tuscaloosa, University of Alabama (1989)"},{"key":"11_CR14","doi-asserted-by":"crossref","unstructured":"K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182\u2013197 (2002)","DOI":"10.1109\/4235.996017"},{"key":"11_CR15","unstructured":"C.M. Fonseca, P.J. Fleming, Genetic algorithms for multi-objective optimization: formulation, discussion and generalization, in Proceedings of the Fifth International Conference on Genetic Algorithms, ed. by S. Forrest (Morgan Kauffman, San Mateo, CA, 1993), pp. 416\u2013423"},{"issue":"6","key":"11_CR16","doi-asserted-by":"publisher","first-page":"1477","DOI":"10.1007\/s00500-014-1284-y","volume":"19","author":"D Gong","year":"2015","unstructured":"D. Gong, G. Wang, X. Sun, Y. Han, A set-based genetic algorithm for solving the many-objective optimization problem. Soft Comput. 19(6), 1477\u20131495 (2015)","journal-title":"Soft Comput."},{"key":"11_CR17","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1016\/0031-3203(78)90018-3","volume":"10","author":"KC Gowda","year":"1978","unstructured":"K.C. Gowda, G. Krishna, Agglomerative clustering using the concept of mutual nearest neighborhood. Pattern Recogn. 10, 105\u2013112 (1978)","journal-title":"Pattern Recogn."},{"issue":"11","key":"11_CR18","doi-asserted-by":"publisher","first-page":"3249","DOI":"10.1007\/s00500-014-1480-9","volume":"19","author":"F Gu","year":"2015","unstructured":"F. Gu, H.L. Liu, K.C. Tan, A hybrid evolutionary multi-objective optimization algorithm with adaptive multi-fitness assignment. Soft Comput. 19(11), 3249\u20133259 (2015)","journal-title":"Soft Comput."},{"key":"11_CR19","unstructured":"J. Horn, N. Nafploitis, D.E. Goldberg, A niched Pareto genetic algorithm for multi-objective optimization, in Proceedings of the First IEEE Conference on Evolutionary Computation, ed. by Z. Michalewicz (IEEE Press, Piscataway, NJ, 1994), pp. 82\u201387"},{"key":"11_CR20","doi-asserted-by":"crossref","unstructured":"Z. Huang, M.K. Ng, A fuzzy k-Modes algorithm for clustering categorical data. IEEE Trans. Fuzzy Syst. 7(4), 446\u2013452 (1999)","DOI":"10.1109\/91.784206"},{"key":"11_CR21","unstructured":"R. Kerber, ChiMerge: discretization of numeric attributes, in Tenth National Conference on Artificial Intelligence (1992), pp. 123\u2013128"},{"key":"11_CR22","doi-asserted-by":"crossref","unstructured":"H. Liu, B. Dai, H. He, Y. Yan, The k-prototype algorithm of clustering high dimensional and large scale mixed data, in Proceedings of the International computer Conference, China (2006), pp. 738\u2013743","DOI":"10.1142\/9789812772763_0110"},{"key":"11_CR23","doi-asserted-by":"crossref","unstructured":"H. Maaranen, K. Miettinen, M.M. Makela, A quasi-random initial population for genetic algorithms, in Computers and Mathematics with Applications, vol. 47(12) (Elsevier, 2004), pp. 1885\u20131895","DOI":"10.1016\/j.camwa.2003.07.011"},{"issue":"12","key":"11_CR24","doi-asserted-by":"publisher","first-page":"1650","DOI":"10.1109\/TPAMI.2002.1114856","volume":"24","author":"U Maulik","year":"2002","unstructured":"U. Maulik, S. Bandyopadhyay, Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. 24(12), 1650\u20131654 (2002)","journal-title":"IEEE Trans. Pattern Anal."},{"key":"11_CR25","doi-asserted-by":"crossref","unstructured":"P. Merz, An Iterated Local Search Approach for Minimum Sum of Squares Clustering. IDA 2003 (2003), pp. 286\u2013296","DOI":"10.1007\/978-3-540-45231-7_27"},{"issue":"13\u201315","key":"11_CR26","doi-asserted-by":"publisher","first-page":"2353","DOI":"10.1016\/j.neucom.2010.02.025","volume":"73","author":"PA Mundra","year":"2010","unstructured":"P.A. Mundra, J.C. Rajapakse, Gene and sample selection for cancer classification with support vectors based t-statistic. Neurocomputing 73(13\u201315), 2353\u20132362 (2010)","journal-title":"Neurocomputing"},{"issue":"5","key":"11_CR27","doi-asserted-by":"publisher","first-page":"1003","DOI":"10.1109\/TKDE.2002.1033770","volume":"14","author":"RT Nag","year":"2002","unstructured":"R.T. Nag, J. Han, CLARANS: a method for clustering objects for spatial data mining. IEEE Trans. Knowl. Data Eng. 14(5), 1003\u20131016 (2002)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"11_CR28","unstructured":"S.K. Pati, A.K. Das, A. Ghosh, Gene selection using multi-objective genetic algorithm integrating cellular automata and rough set theory in Swarm, Evolutionary, and Memetic Computing (2013), pp. 144\u2013155"},{"issue":"9","key":"11_CR29","doi-asserted-by":"publisher","first-page":"2061","DOI":"10.1016\/j.sigpro.2007.02.001","volume":"87","author":"W Pedrycz","year":"2007","unstructured":"W. Pedrycz, K. Hirota, Fuzzy vector quantization with the particle swarm optimization: a study in fuzzy granulation-degranulation information processing. Signal Process. 87(9), 2061\u20132071 (2007)","journal-title":"Signal Process."},{"issue":"4","key":"11_CR30","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1023\/A:1024974810270","volume":"29","author":"MI Petrovskiy","year":"2003","unstructured":"M.I. Petrovskiy, Outlier detection algorithms in data mining systems. Program. Comput. Softw. 29(4), 228\u2013237 (2003)","journal-title":"Program. Comput. Softw."},{"key":"11_CR31","unstructured":"K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series (Springer, 2005). ISBN: 3540209506"},{"key":"11_CR32","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/0377-0427(87)90125-7","volume":"20","author":"PJ Rousseeuw","year":"1987","unstructured":"P.J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53\u201365 (1987)","journal-title":"J. Comput. Appl. Math."},{"key":"11_CR33","unstructured":"J.D. Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, in Proceedings of the First International Conference on Genetic Algorithms ed. by J.J. Grefensttete (Lawrence Erlbaum, Hillsdale, NJ, 1987), pp. 93\u2013100"},{"issue":"3","key":"11_CR34","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1162\/evco.1994.2.3.221","volume":"2","author":"N Srinivas","year":"1995","unstructured":"N. Srinivas, K. Deb, Multi-objective function optimization using non dominated sorting genetic algorithms. Evol. Comput. 2(3), 221\u2013248 (1995)","journal-title":"Evol. Comput."},{"key":"11_CR35","unstructured":"M. Steinbach, G. Karypis, V. Kumar, A Comparison of document clustering technique, Technical Report number 00 - 034, University of Minnesota, Minneapolis (2000)"},{"key":"11_CR36","doi-asserted-by":"publisher","first-page":"826","DOI":"10.1021\/ci00027a006","volume":"35","author":"IV Tetko","year":"1995","unstructured":"I.V. Tetko, D.J. Livingstone, A.I. Luik, Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inf. Comput. Sci. 35, 826\u2013833 (1995)","journal-title":"J. Chem. Inf. Comput. Sci."},{"issue":"1","key":"11_CR37","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1007\/s12304-011-9127-z","volume":"5","author":"DP Waters","year":"2012","unstructured":"D.P. Waters, Von Neumann\u2019s theory of self-reproducing automata: a useful framework for biosemiotics? Biosemiotics 5(1), 5\u201315 (2012)","journal-title":"Biosemiotics"},{"issue":"4","key":"11_CR38","doi-asserted-by":"publisher","first-page":"841","DOI":"10.1109\/34.85677","volume":"13","author":"XL Xie","year":"1991","unstructured":"X.L. Xie, G. Beni, A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 841\u2013846 (1991)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"11_CR39","unstructured":"E. Zitzler, M. Laumanns, L. Thiele, SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization, in Evolutionary Methods for Design, Optimisation, and Control (2002), pp. 95\u2013100"},{"issue":"4","key":"11_CR40","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1109\/4235.797969","volume":"3","author":"E Zitzler","year":"1999","unstructured":"E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257\u2013271 (1999)","journal-title":"IEEE Trans. Evol. Comput."}],"container-title":["Multi-Objective Optimization"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-13-1471-1_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,22]],"date-time":"2019-10-22T10:31:00Z","timestamp":1571740260000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-981-13-1471-1_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9789811314704","9789811314711"],"references-count":39,"URL":"https:\/\/doi.org\/10.1007\/978-981-13-1471-1_11","relation":{},"subject":[],"published":{"date-parts":[[2018]]}}}