{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T17:24:09Z","timestamp":1725902649461},"publisher-location":"Berlin, Heidelberg","reference-count":33,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783662553855"},{"type":"electronic","value":"9783662553862"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-662-55386-2_28","type":"book-chapter","created":{"date-parts":[[2017,6,28]],"date-time":"2017-06-28T07:24:53Z","timestamp":1498634693000},"page":"387-400","source":"Crossref","is-referenced-by-count":0,"title":["Algorithmic Sahlqvist Preservation for Modal Compact Hausdorff Spaces"],"prefix":"10.1007","author":[{"given":"Zhiguang","family":"Zhao","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,6,29]]},"reference":[{"issue":"1","key":"28_CR1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1093\/logcom\/exs030","volume":"25","author":"G Bezhanishvili","year":"2015","unstructured":"Bezhanishvili, G., Bezhanishvili, N., Harding, J.: Modal compact hausdorff spaces. J. Logic Comput. 25(1), 1\u201335 (2015)","journal-title":"J. Logic Comput."},{"issue":"3","key":"28_CR2","first-page":"679","volume":"27","author":"N Bezhanishvili","year":"2017","unstructured":"Bezhanishvili, N., Sourabh, S.: Sahlqvist preservation for topological fixed-point logic. J. Logic Comput. 27(3), 679\u2013703 (2017)","journal-title":"J. Logic Comput."},{"key":"28_CR3","series-title":"Cambridge Tracts in Theoretical Computer Science","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9781107050884","volume-title":"Modal Logic","author":"P Blackburn","year":"2001","unstructured":"Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)"},{"key":"28_CR4","volume-title":"Handbook of Modal Logic","author":"P Blackburn","year":"2006","unstructured":"Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of Modal Logic, vol. 3. Elsevier, Amsterdam (2006)"},{"key":"28_CR5","unstructured":"Britz, C.: Correspondence theory in many-valued modal logics. Master\u2019s thesis, University of Johannesburg, South Africa (2016)"},{"issue":"3","key":"28_CR6","doi-asserted-by":"crossref","first-page":"705","DOI":"10.1093\/logcom\/exx011","volume":"27","author":"W Conradie","year":"2017","unstructured":"Conradie, W., Craig, A.: Canonicity results for mu-calculi: an algorithmic approach. J. Logic Comput. 27(3), 705\u2013748 (2017)","journal-title":"J. Logic Comput."},{"key":"28_CR7","unstructured":"Conradie, W., Craig, A., Palmigiano, A., Zhao, Z.: Constructive canonicity for lattice-based fixed point logics. ArXiv preprint arXiv:1603.06547"},{"key":"28_CR8","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.tcs.2014.10.027","volume":"564","author":"W Conradie","year":"2015","unstructured":"Conradie, W., Fomatati, Y., Palmigiano, A., Sourabh, S.: Algorithmic correspondence for intuitionistic modal mu-calculus. Theoret. Comput. Sci. 564, 30\u201362 (2015)","journal-title":"Theoret. Comput. Sci."},{"key":"28_CR9","doi-asserted-by":"crossref","unstructured":"Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg, N.M.: Categories: how i learned to stop worrying and love two sorts. In: Proceedings of 23rd International Workshop on Logic, Language, Information, and Computation, WoLLIC 2016, Puebla, Mexico, 16\u201319th August 2016, pp. 145\u2013164 (2016)","DOI":"10.1007\/978-3-662-52921-8_10"},{"key":"28_CR10","series-title":"Outstanding Contributions to Logic","doi-asserted-by":"publisher","first-page":"933","DOI":"10.1007\/978-3-319-06025-5_36","volume-title":"Johan van Benthem on Logic and Information Dynamics","author":"W Conradie","year":"2014","unstructured":"Conradie, W., Ghilardi, S., Palmigiano, A.: Unified correspondence. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp. 933\u2013975. Springer, Cham (2014). doi: 10.1007\/978-3-319-06025-5_36"},{"issue":"3","key":"28_CR11","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1016\/j.apal.2011.10.004","volume":"163","author":"W Conradie","year":"2012","unstructured":"Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for distributive modal logic. Ann. Pure Appl. Logic 163(3), 338\u2013376 (2012)","journal-title":"Ann. Pure Appl. Logic"},{"key":"28_CR12","unstructured":"Conradie, W., Palmigiano, A.: Constructive canonicity of inductive inequalities (Submitted). ArXiv preprint arXiv:1603.08341"},{"key":"28_CR13","unstructured":"Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-distributive logics (Submitted). ArXiv preprint arXiv:1603.08515"},{"key":"28_CR14","doi-asserted-by":"crossref","unstructured":"Conradie, W., Palmigiano, A., Sourabh, S.: Algebraic modal correspondence: Sahlqvist and beyond. J. Logical Algebraic Methods Program. (2016)","DOI":"10.1016\/j.jlamp.2016.10.006"},{"key":"28_CR15","unstructured":"Conradie, W., Palmigiano, A., Sourabh, S., Zhao, Z.: Canonicity and relativized canonicity via pseudo-correspondence: an application of ALBA (Submitted). ArXiv preprint arXiv:1511.04271"},{"key":"28_CR16","unstructured":"Conradie, W., Palmigiano, A., Zhao, Z.: Sahlqvist via translation (Submitted). ArXiv preprint arXiv:1603.08220"},{"issue":"3","key":"28_CR17","doi-asserted-by":"crossref","first-page":"867","DOI":"10.1093\/logcom\/exx011","volume":"27","author":"W Conradie","year":"2017","unstructured":"Conradie, W., Robinson, C.: On Sahlqvist theory for hybrid logic. J. Logic Comput. 27(3), 867\u2013900 (2017)","journal-title":"J. Logic Comput."},{"issue":"2","key":"28_CR18","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1007\/BF01061239","volume":"55","author":"JM Dunn","year":"1995","unstructured":"Dunn, J.M.: Positive modal logic. Stud. Logica. 55(2), 301\u2013317 (1995)","journal-title":"Stud. Logica."},{"issue":"3","key":"28_CR19","first-page":"639","volume":"27","author":"S Frittella","year":"2017","unstructured":"Frittella, S., Palmigiano, A., Santocanale, L.: Dual characterizations for finite lattices via correspondence theory for monotone modal logic. J. Logic Comput. 27(3), 639\u2013678 (2017)","journal-title":"J. Logic Comput."},{"issue":"1\u20133","key":"28_CR20","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.apal.2004.04.007","volume":"131","author":"M Gehrke","year":"2005","unstructured":"Gehrke, M., Nagahashi, H., Venema, Y.: A Sahlqvist theorem for distributive modal logic. Ann. Pure Appl. Logic 131(1\u20133), 65\u2013102 (2005)","journal-title":"Ann. Pure Appl. Logic"},{"issue":"1","key":"28_CR21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0168-0072(96)00048-6","volume":"86","author":"S Ghilardi","year":"1997","unstructured":"Ghilardi, S., Meloni, G.: Constructive canonicity in non-classical logics. Ann. Pure Appl. Logic 86(1), 1\u201332 (1997)","journal-title":"Ann. Pure Appl. Logic"},{"issue":"03","key":"28_CR22","doi-asserted-by":"crossref","first-page":"479","DOI":"10.1017\/S0004972700041186","volume":"10","author":"RI Goldblatt","year":"1974","unstructured":"Goldblatt, R.I.: Metamathematics of modal logic. Bull. Aust. Math. Soc. 10(03), 479\u2013480 (1974)","journal-title":"Bull. Aust. Math. Soc."},{"key":"28_CR23","doi-asserted-by":"publisher","unstructured":"Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a proof-theoretic tool. J. Logic Comput. (2016) ArXiv preprint arXiv:1603.08204 . doi: 10.1093\/logcom\/exw022","DOI":"10.1093\/logcom\/exw022"},{"key":"28_CR24","doi-asserted-by":"crossref","first-page":"5","DOI":"10.7146\/math.scand.a-11409","volume":"31","author":"JR Isbell","year":"1972","unstructured":"Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5\u201332 (1972)","journal-title":"Math. Scand."},{"key":"28_CR25","volume-title":"Stone Spaces","author":"PT Johnstone","year":"1986","unstructured":"Johnstone, P.T.: Stone Spaces, vol. 3. Cambridge University Press, Cambridge (1986)"},{"key":"28_CR26","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1007\/BF01057646","volume":"53","author":"B J\u00f3nsson","year":"1994","unstructured":"J\u00f3nsson, B.: On the canonicity of Sahlqvist identities. Stud. Logica. 53, 473\u2013491 (1994)","journal-title":"Stud. Logica."},{"key":"28_CR27","doi-asserted-by":"crossref","first-page":"127","DOI":"10.2307\/2372074","volume":"74","author":"B J\u00f3nsson","year":"1952","unstructured":"J\u00f3nsson, B., Tarski, A.: Boolean algebras with operators. Am. J. Math. 74, 127\u2013162 (1952)","journal-title":"Am. J. Math."},{"key":"28_CR28","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1007\/978-94-017-2798-3_7","volume-title":"Proof Theory of Modal Logic","author":"M Kracht","year":"1996","unstructured":"Kracht, M.: Power and weakness of the modal display calculus. In: Wansing, H. (ed.) Proof Theory of Modal Logic, pp. 93\u2013121. Springer, Heidelebrg (1996). doi: 10.1007\/978-94-017-2798-3_7"},{"issue":"3","key":"28_CR29","first-page":"921","volume":"27","author":"M Ma","year":"2017","unstructured":"Ma, M., Zhao, Z.: Unified correspondence and proof theory for strict implication. J. Logic Comput. 27(3), 921\u2013960 (2017)","journal-title":"J. Logic Comput."},{"issue":"3","key":"28_CR30","doi-asserted-by":"crossref","first-page":"817","DOI":"10.1093\/logcom\/exv041","volume":"27","author":"A Palmigiano","year":"2017","unstructured":"Palmigiano, A., Sourabh, S., Zhao, Z.: J\u00f3nsson-style canonicity for ALBA-inequalities. J. Logic Comput. 27(3), 817\u2013865 (2017)","journal-title":"J. Logic Comput."},{"issue":"3","key":"28_CR31","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1093\/logcom\/exv041","volume":"27","author":"A Palmigiano","year":"2017","unstructured":"Palmigiano, A., Sourabh, S., Zhao, Z.: Sahlqvist theory for impossible worlds. J. Logic Comput. 27(3), 775\u2013816 (2017)","journal-title":"J. Logic Comput."},{"issue":"3","key":"28_CR32","doi-asserted-by":"crossref","first-page":"992","DOI":"10.2307\/2274758","volume":"54","author":"G Sambin","year":"1989","unstructured":"Sambin, G., Vaccaro, V.: A new proof of Sahlqvist\u2019s theorem on modal definability and completeness. J. Symbolic Logic 54(3), 992\u2013999 (1989)","journal-title":"J. Symbolic Logic"},{"key":"28_CR33","first-page":"421","volume":"2","author":"Y Venema","year":"2001","unstructured":"Venema, Y.: Canonical pseudo-correspondence. Adv. Modal Logic 2, 421\u2013430 (2001)","journal-title":"Adv. Modal Logic"}],"container-title":["Lecture Notes in Computer Science","Logic, Language, Information, and Computation"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-662-55386-2_28","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,27]],"date-time":"2019-09-27T05:19:45Z","timestamp":1569561585000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-662-55386-2_28"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783662553855","9783662553862"],"references-count":33,"URL":"https:\/\/doi.org\/10.1007\/978-3-662-55386-2_28","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]}}}