{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T13:59:22Z","timestamp":1725803962669},"publisher-location":"Berlin, Heidelberg","reference-count":27,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783662448441"},{"type":"electronic","value":"9783662448458"}],"license":[{"start":{"date-parts":[[2014,1,1]],"date-time":"2014-01-01T00:00:00Z","timestamp":1388534400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2014,1,1]],"date-time":"2014-01-01T00:00:00Z","timestamp":1388534400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2014]]},"DOI":"10.1007\/978-3-662-44845-8_7","type":"book-chapter","created":{"date-parts":[[2014,9,1]],"date-time":"2014-09-01T12:51:33Z","timestamp":1409575893000},"page":"98-113","source":"Crossref","is-referenced-by-count":3,"title":["Gaussian Process Multi-task Learning Using Joint Feature Selection"],"prefix":"10.1007","author":[{"given":"P. K.","family":"Srijith","sequence":"first","affiliation":[]},{"given":"Shirish","family":"Shevade","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"issue":"1","key":"7_CR1","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1023\/A:1007379606734","volume":"28","author":"R. Caruana","year":"1997","unstructured":"Caruana, R.: Multitask Learning. Machine Learning\u00a028(1), 41\u201375 (1997)","journal-title":"Machine Learning"},{"key":"7_CR2","first-page":"1817","volume":"6","author":"R.K. Ando","year":"2005","unstructured":"Ando, R.K., Zhang, T.: A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data. JMLR\u00a06, 1817\u20131853 (2005)","journal-title":"JMLR"},{"key":"7_CR3","first-page":"83","volume":"4","author":"B. Bakker","year":"2003","unstructured":"Bakker, B., Heskes, T.: Task Clustering and Gating for Bayesian Multitask Learning. JMLR\u00a04, 83\u201399 (2003)","journal-title":"JMLR"},{"key":"7_CR4","first-page":"615","volume":"6","author":"T. Evgeniou","year":"2005","unstructured":"Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning Multiple Tasks with Kernel Methods. JMLR\u00a06, 615\u2013637 (2005)","journal-title":"JMLR"},{"key":"7_CR5","first-page":"35","volume":"8","author":"Y. Xue","year":"2007","unstructured":"Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task Learning for Classification with Dirichlet Process Priors. JMLR\u00a08, 35\u201363 (2007)","journal-title":"JMLR"},{"issue":"3","key":"7_CR6","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1007\/s10994-007-5040-8","volume":"73","author":"A. Argyriou","year":"2008","unstructured":"Argyriou, A., Evgeniou, T., Pontil, M.: Convex Multi-task Feature Learning. Machine Learning\u00a073(3), 243\u2013272 (2008)","journal-title":"Machine Learning"},{"key":"7_CR7","doi-asserted-by":"crossref","unstructured":"Yu, K., Tresp, V., Schwaighofer, A.: Learning Gaussian processes from Multiple Tasks. In: ICML, pp. 1012\u20131019 (2005)","DOI":"10.1145\/1102351.1102479"},{"key":"7_CR8","unstructured":"Obozinski, G., Taskar, B.: Multi-task Feature Selection. Technical report, Department of Statistics, University of California, Berkeley (2006)"},{"key":"7_CR9","doi-asserted-by":"crossref","unstructured":"Xiong, T., Bi, J., Rao, R.B., Cherkassky, V.: Probabilistic Joint Feature Selection for Multi-task Learning. In: SDM (2007)","DOI":"10.1137\/1.9781611972771.30"},{"key":"7_CR10","unstructured":"Archembeau, C., Guo, S., Zoeter, O.: Sparse Bayesian Multi-task Learning. In: NIPS, pp. 1755\u20131763 (2011)"},{"key":"7_CR11","doi-asserted-by":"crossref","unstructured":"Hern\u00e1ndez-Lobato, D., Hern\u00e1ndez-Lobato, J.M., Helleputte, T., Dupont, P.: Expectation Propagation for Bayesian Multi-task Feature Selection. In: ECML-PKDD, pp. 522\u2013537 (2010)","DOI":"10.1007\/978-3-642-15880-3_39"},{"key":"7_CR12","doi-asserted-by":"crossref","unstructured":"Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). MIT Press (2005)","DOI":"10.7551\/mitpress\/3206.001.0001"},{"key":"7_CR13","doi-asserted-by":"crossref","unstructured":"Lawrence, N.D., Platt, J.C.: Learning to Learn with the Informative Vector Machine. In: ICML, pp. 65\u201372 (2004)","DOI":"10.1145\/1015330.1015382"},{"key":"7_CR14","unstructured":"Bonilla, E.V., Chai, K.M., Williams, C.K.I.: Multi-task Gaussian Process Prediction. In: NIPS, pp. 153\u2013160 (2008)"},{"key":"7_CR15","unstructured":"Teh, Y.W., Seeger, M., Jordan, M.I.: Semiparametric Latent Factor Models. In: International Workshop on Artificial Intelligence and Statistics, vol.\u00a010 (2005)"},{"key":"7_CR16","unstructured":"Liu, J., Ji, S., Ye, J.: Multi-task Feature Learning via Efficient L2,1-Norm Minimization. In: UAI, pp. 339\u2013348 (2009)"},{"issue":"2","key":"7_CR17","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1007\/s11222-008-9111-x","volume":"20","author":"G. Obozinski","year":"2010","unstructured":"Obozinski, G., Taskar, B., Jordan, M.I.: Joint Covariate Selection and Joint Subspace Selection for Multiple Classification Problems. Statistics and Computing\u00a020(2), 231\u2013252 (2010)","journal-title":"Statistics and Computing"},{"key":"7_CR18","unstructured":"Zhang, Y., Yeung, D.Y., Xu, Q.: Probabilistic Multi-Task Feature Selection. In: NIPS, pp. 2559\u20132567 (2010)"},{"key":"7_CR19","first-page":"75","volume":"12","author":"T. Jebara","year":"2011","unstructured":"Jebara, T.: Multitask Sparsity via Maximum Entropy Discrimination. JMLR\u00a012, 75\u2013110 (2011)","journal-title":"JMLR"},{"key":"7_CR20","unstructured":"Titsias, M.K., L\u00e1zaro-Gredilla, M.: Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning. In: NIPS, pp. 2339\u20132347 (2011)"},{"key":"7_CR21","doi-asserted-by":"crossref","unstructured":"Wang, Y., Khardon, R., Protopapas, P.: Shift-invariant Grouped Multi-task Learning for Gaussian Processes. In: ECML-PKDD, pp. 418\u2013434 (2010)","DOI":"10.1007\/978-3-642-15939-8_27"},{"key":"7_CR22","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","volume":"58","author":"R. Tibshirani","year":"1994","unstructured":"Tibshirani, R.: Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society\u00a058, 267\u2013288 (1994)","journal-title":"Journal of the Royal Statistical Society"},{"key":"7_CR23","doi-asserted-by":"crossref","unstructured":"Raman, S., Fuchs, T.J., Wild, P.J., Dahl, E., Roth, V.: Bayesian Group-Lasso for Analyzing Contingency Tables. In: ICML, pp. 881\u2013888 (2009)","DOI":"10.1145\/1553374.1553487"},{"issue":"1","key":"7_CR24","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1561\/2200000015","volume":"4","author":"F.R. Bach","year":"2012","unstructured":"Bach, F.R., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with Sparsity-Inducing Penalties. Foundations and Trends in Machine Learning\u00a04(1), 1\u2013106 (2012)","journal-title":"Foundations and Trends in Machine Learning"},{"key":"7_CR25","doi-asserted-by":"crossref","unstructured":"Liu, H., Palatucci, M., Jian, Z.: Blockwise Coordinate Descent Procedures for the Multi-task Lasso, with Applications to Neural Semantic Basis Discovery. In: ICML, pp. 649\u2013656 (2009)","DOI":"10.1145\/1553374.1553458"},{"issue":"2","key":"7_CR26","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1287\/mksc.15.2.173","volume":"15","author":"P.J. Lenk","year":"1996","unstructured":"Lenk, P.J., DeSarbo, W.S., Green, P.E., Young, M.R.: Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs. Marketing Science\u00a015(2), 173\u2013191 (1996)","journal-title":"Marketing Science"},{"key":"7_CR27","doi-asserted-by":"publisher","first-page":"1895","DOI":"10.1162\/089976698300017197","volume":"10","author":"T.G. Dietterich","year":"1998","unstructured":"Dietterich, T.G.: Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation\u00a010, 1895\u20131923 (1998)","journal-title":"Neural Computation"}],"container-title":["Lecture Notes in Computer Science","Machine Learning and Knowledge Discovery in Databases"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-662-44845-8_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,2]],"date-time":"2024-06-02T04:34:25Z","timestamp":1717302865000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-662-44845-8_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014]]},"ISBN":["9783662448441","9783662448458"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-662-44845-8_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2014]]}}}