{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T15:10:59Z","timestamp":1725808259368},"publisher-location":"Cham","reference-count":11,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319125671"},{"type":"electronic","value":"9783319125688"}],"license":[{"start":{"date-parts":[[2014,1,1]],"date-time":"2014-01-01T00:00:00Z","timestamp":1388534400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2014]]},"DOI":"10.1007\/978-3-662-44654-6_44","type":"book-chapter","created":{"date-parts":[[2014,9,14]],"date-time":"2014-09-14T21:13:21Z","timestamp":1410729201000},"page":"447-455","source":"Crossref","is-referenced-by-count":3,"title":["Solar Radiation Time-Series Prediction Based on Empirical Mode Decomposition and Artificial Neural Networks"],"prefix":"10.1007","author":[{"given":"Petros-Fotios","family":"Alvanitopoulos","sequence":"first","affiliation":[]},{"given":"Ioannis","family":"Andreadis","sequence":"additional","affiliation":[]},{"given":"Nikolaos","family":"Georgoulas","sequence":"additional","affiliation":[]},{"given":"Michalis","family":"Zervakis","sequence":"additional","affiliation":[]},{"given":"Nikolaos","family":"Nikolaidis","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"key":"44_CR1","doi-asserted-by":"publisher","first-page":"675","DOI":"10.1016\/S0360-5442(00)00007-4","volume":"25","author":"F.J. Batlles","year":"2000","unstructured":"Batlles, F.J., Rubio, M.A., Tovar, J., Olmo, F.J., Alados-Arboledas, L.: Empirical modelling of hourly direct irradiance by means of hourly global irradiance. Energy\u00a025, 675\u2013688 (2000)","journal-title":"Energy"},{"key":"44_CR2","doi-asserted-by":"publisher","first-page":"254","DOI":"10.1016\/j.solener.2006.03.009","volume":"81","author":"P.G. Loutzenhier","year":"2007","unstructured":"Loutzenhier, P.G., Manz, H., Felsmann, C., Strachan, P.A., Frank, T., Maxwell, G.M.: Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation. Sol Energy\u00a081, 254\u2013267 (2007)","journal-title":"Sol Energy"},{"key":"44_CR3","doi-asserted-by":"publisher","first-page":"647","DOI":"10.1016\/S0960-1481(01)00153-7","volume":"27","author":"S. Safi","year":"2002","unstructured":"Safi, S., Zeroual, A., Hassani, M.: Prediction of global daily solar radiation using higher order statistics. Renew Energy\u00a027, 647\u2013666 (2002)","journal-title":"Renew Energy"},{"key":"44_CR4","doi-asserted-by":"publisher","first-page":"1414","DOI":"10.1016\/j.renene.2006.06.014","volume":"32","author":"S. Kaplanis","year":"2007","unstructured":"Kaplanis, S., Kaplani, E.: A model to predict expected mean and stochastic hourly global solar radiation I(h;nj) values. Renew Energy\u00a032, 1414\u20131425 (2007)","journal-title":"Renew Energy"},{"key":"44_CR5","doi-asserted-by":"publisher","first-page":"928","DOI":"10.1016\/j.renene.2007.09.028","volume":"33","author":"K. Moustrisa","year":"2008","unstructured":"Moustrisa, K., Paliatsos, A.G., Bloutsos, A., Nikolaidis, K., Koronaki, I., Kavadias, K.: Use of neural networks for the creation of hourly global and diffuse solar irradiance data at representative locations in Greece. Renew Energy\u00a033, 928\u2013932 (2008)","journal-title":"Renew Energy"},{"key":"44_CR6","doi-asserted-by":"publisher","first-page":"571","DOI":"10.1016\/j.enpol.2007.09.033","volume":"36","author":"S. Rehman","year":"2008","unstructured":"Rehman, S., Mohandes, M.: Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy\u00a036, 571\u2013576 (2008)","journal-title":"Energy Policy"},{"key":"44_CR7","doi-asserted-by":"crossref","unstructured":"Huang, N.E., Shen, Z., Long, S.R., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society, London, Series A, pp. 903\u2013995 (1998)","DOI":"10.1098\/rspa.1998.0193"},{"key":"44_CR8","doi-asserted-by":"publisher","first-page":"208","DOI":"10.1109\/3477.558801","volume":"27","author":"H.T. Siegelmann","year":"1997","unstructured":"Siegelmann, H.T., Horne, B.G., Giles, C.L.: Computational capabilities of recurrent narx neural networks. IEEE Trans. Syst., Man Cybern., pt. B\u00a027, 208 (1997)","journal-title":"IEEE Trans. Syst., Man Cybern., pt. B"},{"key":"44_CR9","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1016\/j.fss.2004.09.015","volume":"150","author":"Y. Gao","year":"2005","unstructured":"Gao, Y., Er, M.J.: NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches. Fuzzy Sets and Systems\u00a0150, 331\u2013350 (2005)","journal-title":"Fuzzy Sets and Systems"},{"key":"44_CR10","unstructured":"http:\/\/re.jrc.ec.europa.eu\/pvgis\/apps4\/pvest.php"},{"key":"44_CR11","unstructured":"Moirogiorgou, K., Efstathiou, D., Zervakis, M., Nikolaidis, N.P., Stamatellos, G., Andreadis, I., Georgoulas, N., Savakis, A.E.: High Frequency Monitoring System for Integrated Water Resources Management of Rivers. In: 1st EWaS-MED International Conference: Improving Efficiency of Water Systems in a Changing Natural and Financial Environment, Thessaloniki, Greece, pp. 1\u20136 (April 2013)"}],"container-title":["Lecture Notes in Computer Science","Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-662-44654-6_44","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,27]],"date-time":"2019-05-27T18:14:25Z","timestamp":1558980865000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-662-44654-6_44"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014]]},"ISBN":["9783319125671","9783319125688"],"references-count":11,"URL":"https:\/\/doi.org\/10.1007\/978-3-662-44654-6_44","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2014]]}}}