{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T17:05:41Z","timestamp":1726247141034},"publisher-location":"Wiesbaden","reference-count":12,"publisher":"Springer Fachmedien Wiesbaden","isbn-type":[{"type":"print","value":"9783658440367"},{"type":"electronic","value":"9783658440374"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-658-44037-4_88","type":"book-chapter","created":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T08:05:12Z","timestamp":1708329912000},"page":"338-343","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Comparing Image Segmentation Neural Networks for the Analysis of Precision Cut Lung Slices"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6940-1361","authenticated-orcid":false,"given":"Mohan","family":"Xu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4860-2767","authenticated-orcid":false,"given":"Susann","family":"Dehmel","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3515-9209","authenticated-orcid":false,"given":"Lena","family":"Wiese","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,20]]},"reference":[{"key":"88_CR1","doi-asserted-by":"crossref","unstructured":"Wiese L, H\u00f6ltje D. NNCompare: a framework for dataset selection, data augmentation and comparison of different neural networks for medical image analysis. Proc IEEE. 2021:1\u20137.","DOI":"10.1145\/3462462.3468884"},{"key":"88_CR2","doi-asserted-by":"crossref","unstructured":"Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Proc MICCAI. 2015:234\u201341.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"88_CR3","doi-asserted-by":"crossref","unstructured":"Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J. Unet++: A nested U-net architecture for medical image segmentation. Proc MICCAI. 2018:3\u201311.","DOI":"10.1007\/978-3-030-00889-5_1"},{"key":"88_CR4","doi-asserted-by":"crossref","unstructured":"Chen LC, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587. 2017.","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"88_CR5","doi-asserted-by":"crossref","unstructured":"Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. Proc ECCV. 2018:801\u201318.","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"88_CR6","doi-asserted-by":"crossref","unstructured":"Zhao H, Shi J, Qi X,Wang X, Jia J. Pyramid scene parsing network. Proc IEEE. 2017:2881\u2013 90.","DOI":"10.1109\/CVPR.2017.660"},{"key":"88_CR7","doi-asserted-by":"crossref","unstructured":"Chaurasia A, Culurciello E. Linknet: exploiting encoder representations for efficient semantic segmentation. Proc IEEE. 2017:1\u20134.","DOI":"10.1109\/VCIP.2017.8305148"},{"key":"88_CR8","doi-asserted-by":"crossref","unstructured":"Lin TY, Doll\u00e1r P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. Proc IEEE. 2017:2117\u201325.","DOI":"10.1109\/CVPR.2017.106"},{"key":"88_CR9","doi-asserted-by":"crossref","unstructured":"Khosravan N, Mortazi A, Wallace M, Bagci U. Pan: projective adversarial network for medical image segmentation. Proc MICCAI. 2019:68\u201376.","DOI":"10.1007\/978-3-030-32226-7_8"},{"key":"88_CR10","doi-asserted-by":"crossref","unstructured":"Li R, Zheng S, Zhang C, Duan C, Su J, Wang L et al. Multiattention network for semantic segmentation of fine-resolution remote sensing images. IEEE. 2021;60:1\u201313.","DOI":"10.1109\/TGRS.2021.3093977"},{"key":"88_CR11","unstructured":"Steinmeyer C, Dehmel S, Theidel D, Braun A, Wiese L. Automating bronchoconstriction analysis based on U-net. EDBT\/ICDT Workshops. 2021."},{"key":"88_CR12","doi-asserted-by":"crossref","unstructured":"Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA. Albumentations: fast and flexible image augmentations. Information. 2020;11(2).","DOI":"10.3390\/info11020125"}],"container-title":["Informatik aktuell","Bildverarbeitung f\u00fcr die Medizin 2024"],"original-title":[],"language":"de","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-658-44037-4_88","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T08:08:52Z","timestamp":1708330132000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-658-44037-4_88"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783658440367","9783658440374"],"references-count":12,"URL":"https:\/\/doi.org\/10.1007\/978-3-658-44037-4_88","relation":{},"ISSN":["1431-472X","2628-8958"],"issn-type":[{"type":"print","value":"1431-472X"},{"type":"electronic","value":"2628-8958"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"20 February 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BVM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"BVM Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Erlangen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Deutschland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 March 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 March 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bvm2024a","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.bvm-workshop.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}