{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T17:05:36Z","timestamp":1726247136445},"publisher-location":"Wiesbaden","reference-count":9,"publisher":"Springer Fachmedien Wiesbaden","isbn-type":[{"type":"print","value":"9783658440367"},{"type":"electronic","value":"9783658440374"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-658-44037-4_81","type":"book-chapter","created":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T08:05:12Z","timestamp":1708329912000},"page":"316-321","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Data Consistent Variational Networks for Zero-shot Self-supervised MR Reconstruction"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0001-8013-1320","authenticated-orcid":false,"given":"Florian","family":"F\u00fcrnrohr","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6484-2130","authenticated-orcid":false,"given":"Jens","family":"Wetzl","sequence":"additional","affiliation":[]},{"given":"Marc","family":"Vornehm","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3925-4441","authenticated-orcid":false,"given":"Daniel","family":"Giese","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5357-8656","authenticated-orcid":false,"given":"Florian","family":"Knoll","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,20]]},"reference":[{"key":"81_CR1","doi-asserted-by":"crossref","unstructured":"Yaman B, Hosseini SAH, Moeller S, Ellermann J, U\u011furbil K, Ak\u00e7akaya M. Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data. Magn Reson Med. 2020;84(6):3172\u201391.","DOI":"10.1002\/mrm.28378"},{"key":"81_CR2","unstructured":"Yaman B, Hosseini SAH, Ak\u00e7akaya M. Zero-shot self-supervised learning for MRI reconstruction. ArXiv. 2021."},{"key":"81_CR3","doi-asserted-by":"crossref","unstructured":"Aggarwal HK, Mani MP, Jacob M. MoDL: Model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging. 2018;38(2):394\u2013405.","DOI":"10.1109\/TMI.2018.2865356"},{"key":"81_CR4","doi-asserted-by":"crossref","unstructured":"Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2018;79(6):3055\u201371.","DOI":"10.1002\/mrm.26977"},{"key":"81_CR5","doi-asserted-by":"crossref","unstructured":"Sriram A, Zbontar J, Murrell T, Defazio A, Zitnick CL, Yakubova N et al. End-to-end variational networks for accelerated MRI reconstruction. Med Image Comput Comput Assist Interv. Springer. 2020:64\u201373.","DOI":"10.1007\/978-3-030-59713-9_7"},{"key":"81_CR6","doi-asserted-by":"crossref","unstructured":"Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Process Mag. 2008;25(2):72\u201382.","DOI":"10.1109\/MSP.2007.914728"},{"key":"81_CR7","doi-asserted-by":"crossref","unstructured":"Yaman B, Gu H, Hosseini SAH, Demirel OB, Moeller S, Ellermann J et al. Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging. NMR Biomed. 2022;35(12):e4798.","DOI":"10.1002\/nbm.4798"},{"key":"81_CR8","doi-asserted-by":"crossref","unstructured":"Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM et al. ESPIRiT: an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med. 2014;71(3):990\u20131001.","DOI":"10.1002\/mrm.24751"},{"key":"81_CR9","unstructured":"Epperson K, Sawyer AM, Lustig M, Alley M, Uecker M. Creation of fully sampled MR data repository for compressed sensing of the knee. Proc Sec Mag Reson Techn. 2013."}],"container-title":["Informatik aktuell","Bildverarbeitung f\u00fcr die Medizin 2024"],"original-title":[],"language":"de","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-658-44037-4_81","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T08:08:09Z","timestamp":1708330089000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-658-44037-4_81"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783658440367","9783658440374"],"references-count":9,"URL":"https:\/\/doi.org\/10.1007\/978-3-658-44037-4_81","relation":{},"ISSN":["1431-472X","2628-8958"],"issn-type":[{"type":"print","value":"1431-472X"},{"type":"electronic","value":"2628-8958"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"20 February 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BVM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"BVM Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Erlangen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Deutschland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 March 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 March 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bvm2024a","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.bvm-workshop.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}