{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T17:05:38Z","timestamp":1726247138796},"publisher-location":"Wiesbaden","reference-count":9,"publisher":"Springer Fachmedien Wiesbaden","isbn-type":[{"type":"print","value":"9783658440367"},{"type":"electronic","value":"9783658440374"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-658-44037-4_80","type":"book-chapter","created":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T08:05:12Z","timestamp":1708329912000},"page":"310-315","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Neural Network-based Sinogram Upsampling in Real-measured CT Reconstruction"],"prefix":"10.1007","author":[{"given":"Lena","family":"Augustin","sequence":"first","affiliation":[]},{"given":"Fabian","family":"Wagner","sequence":"additional","affiliation":[]},{"given":"Mareike","family":"Thies","sequence":"additional","affiliation":[]},{"given":"Andreas","family":"Maier","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,20]]},"reference":[{"key":"80_CR1","doi-asserted-by":"crossref","unstructured":"Giordano B, Grauer J, Miller C, Morgan T, Rechtine G et al. Radiation exposure issues in orthopaedics. JBJS. 2011;93(12):e69.","DOI":"10.2106\/JBJS.J.01328"},{"key":"80_CR2","doi-asserted-by":"crossref","unstructured":"Ma Y, Wei B, Feng P, He P, Guo X, Wang G. Low-dose CT image denoising using a generative adversarial network with a hybrid loss function for noise learning. IEEE Access. 2020;8:67519\u201329.","DOI":"10.1109\/ACCESS.2020.2986388"},{"key":"80_CR3","doi-asserted-by":"crossref","unstructured":"Lee H, Lee J, Cho S. View-interpolation of sparsely sampled sinogram using convolutional neural network. Proc SPIE. Vol. 10133. 2017:617\u201324.","DOI":"10.1117\/12.2254244"},{"key":"80_CR4","doi-asserted-by":"crossref","unstructured":"Li S, Ye W, Li F. LU-Net: combining LSTM and u-net for sinogram synthesis in sparse-view SPECT reconstruction. Math Biosci Eng. 2022;19(4):4320\u201340.","DOI":"10.3934\/mbe.2022200"},{"key":"80_CR5","doi-asserted-by":"crossref","unstructured":"Yu M, Han M, Baek J. A convolutional neural network based super resolution technique of CT image utilizing both sinogram domain and image domain data. MProc SPIE. Vol. 12032. 2022:564\u20139.","DOI":"10.1117\/12.2611972"},{"key":"80_CR6","unstructured":"McCollough C, Chen B, Holmes D, Duan X, Yu Z, Yu L et al. Low dose CT image and projection data. 2020."},{"key":"80_CR7","doi-asserted-by":"crossref","unstructured":"Wagner F, Thies M, Pfaff L, Aust O, Pechmann S, Maul N et al. On the benefit of dual-domain denoising in a self-supervised low-dose CT setting. Proc IEEE ISBI. 2023:1\u20135.","DOI":"10.1109\/ISBI53787.2023.10230511"},{"key":"80_CR8","unstructured":"Ronchetti M. TorchRadon: Fast Differentiable Routines for Computed Tomography. 2020."},{"key":"80_CR9","unstructured":"Falcon W, The PyTorch Lightning Team. PyTorch Lightning. Version 1.4. 2019."}],"container-title":["Informatik aktuell","Bildverarbeitung f\u00fcr die Medizin 2024"],"original-title":[],"language":"de","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-658-44037-4_80","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T08:08:25Z","timestamp":1708330105000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-658-44037-4_80"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783658440367","9783658440374"],"references-count":9,"URL":"https:\/\/doi.org\/10.1007\/978-3-658-44037-4_80","relation":{},"ISSN":["1431-472X","2628-8958"],"issn-type":[{"type":"print","value":"1431-472X"},{"type":"electronic","value":"2628-8958"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"20 February 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BVM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"BVM Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Erlangen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Deutschland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 March 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 March 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bvm2024a","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.bvm-workshop.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}