{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T17:05:31Z","timestamp":1726247131858},"publisher-location":"Wiesbaden","reference-count":7,"publisher":"Springer Fachmedien Wiesbaden","isbn-type":[{"type":"print","value":"9783658440367"},{"type":"electronic","value":"9783658440374"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-658-44037-4_65","type":"book-chapter","created":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T03:05:12Z","timestamp":1708311912000},"page":"226-231","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Influence of imperfect annotations on deep learning segmentation models"],"prefix":"10.1007","author":[{"given":"Christopher","family":"Br\u00fcckner","sequence":"first","affiliation":[]},{"given":"Chang","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Leonhard","family":"Rist","sequence":"additional","affiliation":[]},{"given":"Andreas","family":"Maier","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,20]]},"reference":[{"key":"65_CR1","doi-asserted-by":"crossref","unstructured":"Gonzalez-Jimenez A, Lionetti S, Gottfrois P, Gr\u00f6ger F, Pouly M,Navarini AA. Robust T-Loss for Medical Image Segmentation. MICCAI 2023. Springer. 2023.","DOI":"10.1007\/978-3-031-43898-1_68"},{"key":"65_CR2","doi-asserted-by":"crossref","unstructured":"Vorontsov E, Kadoury S. Label Noise in Segmentation Networks: Mitigation Must Deal with Bias. DGM4MICCAI 2021. Springer International Publishing, 2021:251\u20138.","DOI":"10.1007\/978-3-030-88210-5_25"},{"key":"65_CR3","doi-asserted-by":"crossref","unstructured":"Heller N, Dean J, Papanikolopoulos N. Imperfect Segmentation Labels: How Much Do They Matter? LABELS Workshop MICCAI 2017. Springer International Publishing, 2018:112\u2013 20.","DOI":"10.1007\/978-3-030-01364-6_13"},{"key":"65_CR4","unstructured":"V\u0103dineanu \u015e, Pelt D, Dzyubachyk O, Batenburg J. An Analysis of the Impact of Annotation Errors on the Accuracy of Deep Learning for Cell Segmentation. Medical Imaging with Deep Learning. 2022."},{"key":"65_CR5","doi-asserted-by":"crossref","unstructured":"Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. MICCAI 2015. Springer. 2015:234\u201341.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"65_CR6","unstructured":"Bilic P, Christ PF, Vorontsov E, Chlebus G, Chen H, Dou Q et al. The Liver Tumor Segmentation Benchmark (LiTS). CoRR. 2019."},{"key":"65_CR7","doi-asserted-by":"crossref","unstructured":"Kaur H, Kaur N, Neeru N. Evolution of multiorgan segmentation techniques from traditional to deep learning in abdominal CT images \u2013 A systematic review. Displays. 2022.","DOI":"10.1016\/j.displa.2022.102223"}],"container-title":["Informatik aktuell","Bildverarbeitung f\u00fcr die Medizin 2024"],"original-title":[],"language":"de","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-658-44037-4_65","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T03:06:54Z","timestamp":1708312014000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-658-44037-4_65"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783658440367","9783658440374"],"references-count":7,"URL":"https:\/\/doi.org\/10.1007\/978-3-658-44037-4_65","relation":{},"ISSN":["1431-472X","2628-8958"],"issn-type":[{"type":"print","value":"1431-472X"},{"type":"electronic","value":"2628-8958"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"20 February 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BVM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"BVM Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Erlangen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Deutschland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 March 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 March 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bvm2024a","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.bvm-workshop.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}