{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T17:05:24Z","timestamp":1726247124668},"publisher-location":"Wiesbaden","reference-count":12,"publisher":"Springer Fachmedien Wiesbaden","isbn-type":[{"type":"print","value":"9783658440367"},{"type":"electronic","value":"9783658440374"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-658-44037-4_54","type":"book-chapter","created":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T03:05:12Z","timestamp":1708311912000},"page":"190-195","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Automated Lesion Detection in Endoscopic Imagery for Small Animal Models"],"prefix":"10.1007","author":[{"given":"Thomas","family":"Eixelberger","sequence":"first","affiliation":[]},{"given":"Qi","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Bisan A.","family":"Zohud","sequence":"additional","affiliation":[]},{"given":"Ralf","family":"Hackner","sequence":"additional","affiliation":[]},{"given":"Rene","family":"Jackstadt","sequence":"additional","affiliation":[]},{"given":"Michael","family":"St\u00fcrzl","sequence":"additional","affiliation":[]},{"given":"Elisabeth","family":"Naschberger","sequence":"additional","affiliation":[]},{"given":"Thomas","family":"Wittenberg","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,20]]},"reference":[{"key":"54_CR1","doi-asserted-by":"crossref","unstructured":"Chen C, Neumann J, K\u00fchn F, Lee SM, Drefs M, Andrassy J et al. Establishment of an endoscopy-guided minimally invasive orthotopic mouse model of colorectal cancer. Cancers (Basel). 2020;12(10):3007.","DOI":"10.3390\/cancers12103007"},{"key":"54_CR2","doi-asserted-by":"crossref","unstructured":"Rosenberg DW, Giardina C, Tanaka T. Mouse models for the study of colon carcinogenesis. Carcinogenesis. 2009;30(2):183\u201396.","DOI":"10.1093\/carcin\/bgn267"},{"key":"54_CR3","doi-asserted-by":"crossref","unstructured":"Taketo MM, Edelmann W. Mouse models of colon cancer. Gastroent. 2009;136(3):780\u201398.","DOI":"10.1053\/j.gastro.2008.12.049"},{"key":"54_CR4","doi-asserted-by":"crossref","unstructured":"Becker C, Fantini MC, Neurath MF. High resolution colonoscopy in live mice. Nat Protoc. 2006;1(6):2900\u20134.","DOI":"10.1038\/nprot.2006.446"},{"key":"54_CR5","doi-asserted-by":"crossref","unstructured":"Becker C, Fantini MC, Wirtz S, Nikolaev A, Kiesslich R, Lehr HA et al. In vivo imaging of colitis and colon cancer development in mice using high resolution chromoendoscopy. Gut. 2005;54(7):950\u20134.","DOI":"10.1136\/gut.2004.061283"},{"key":"54_CR6","doi-asserted-by":"crossref","unstructured":"Wittenberg T, Raithel M. Artificial intelligence-based polyp detection in colonoscopy: where have we been, where do we stand, and where are we headed? Visc Med. 2020;36(6):428\u201338.","DOI":"10.1159\/000512438"},{"key":"54_CR7","doi-asserted-by":"crossref","unstructured":"Krenzer A, Banck M, Makowski K, Hekalo A, Fitting D, Troya J et al. A real-time polypdetection system with clinical application in colonoscopy using deep convolutional neural networks. J Imaging. 2023;9(2).","DOI":"10.3390\/jimaging9020026"},{"key":"54_CR8","doi-asserted-by":"crossref","unstructured":"Ghose P, Ghose A, Sadhukhan D, Pal S, Mitra M. Improved polyp detection from colonoscopy images using finetuned YOLO-v5. Multimed Tools Appl. 2023.","DOI":"10.1007\/s11042-023-17138-3"},{"key":"54_CR9","doi-asserted-by":"crossref","unstructured":"Wang CY, Bochkovskiy A, Liao HYM. YOLOv7: trainable bag-of-freebies sets new stateof- the-art for real-time object detectors. 2022.","DOI":"10.1109\/CVPR52729.2023.00721"},{"key":"54_CR10","doi-asserted-by":"crossref","unstructured":"Ma Y, Chen X, Cheng K, Li Y, Sun B. LDPolypVideo benchmark: a large-scale colonoscopy video dataset of diverse polyps. Proc MICCAI. 2021:387\u201396.","DOI":"10.1007\/978-3-030-87240-3_37"},{"key":"54_CR11","doi-asserted-by":"crossref","unstructured":"Eixelberger T, Wolkenstein G, Hackner R, Bruns V, M\u00fchldorfer S, Geissler U et al. YOLO networks for polyp detection: a human-in-the-loop training approach. Curr Dir Biomed Eng. 2022;8(2):277\u201380.","DOI":"10.1515\/cdbme-2022-1071"},{"key":"54_CR12","doi-asserted-by":"crossref","unstructured":"Bewley A, Ge Z, Ott L, Ramos F, Upcroft B. Simple online and realtime tracking. Processing IEEE. 2016:3464\u20138.","DOI":"10.1109\/ICIP.2016.7533003"}],"container-title":["Informatik aktuell","Bildverarbeitung f\u00fcr die Medizin 2024"],"original-title":[],"language":"de","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-658-44037-4_54","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T03:06:17Z","timestamp":1708311977000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-658-44037-4_54"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783658440367","9783658440374"],"references-count":12,"URL":"https:\/\/doi.org\/10.1007\/978-3-658-44037-4_54","relation":{},"ISSN":["1431-472X","2628-8958"],"issn-type":[{"type":"print","value":"1431-472X"},{"type":"electronic","value":"2628-8958"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"20 February 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BVM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"BVM Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Erlangen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Deutschland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 March 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 March 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bvm2024a","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.bvm-workshop.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}