{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T17:05:24Z","timestamp":1726247124459},"publisher-location":"Wiesbaden","reference-count":11,"publisher":"Springer Fachmedien Wiesbaden","isbn-type":[{"type":"print","value":"9783658440367"},{"type":"electronic","value":"9783658440374"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-658-44037-4_51","type":"book-chapter","created":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T08:05:12Z","timestamp":1708329912000},"page":"172-177","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Improving Segmentation Models for AR-guided Liver Surgery using Synthetic Images"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0003-0349-8844","authenticated-orcid":false,"given":"Michael","family":"Schwimmbeck","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0009-1986-6916","authenticated-orcid":false,"given":"Serouj","family":"Khajarian","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0009-9760-5412","authenticated-orcid":false,"given":"Stefanie","family":"Remmele","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,20]]},"reference":[{"key":"51_CR1","doi-asserted-by":"crossref","unstructured":"Orcutt ST, Anaya DA. Liver resection and surgical strategies for management of primary liver cancer. Cancer Control. 2018;25(1):1073274817744621.","DOI":"10.1177\/1073274817744621"},{"key":"51_CR2","doi-asserted-by":"crossref","unstructured":"Kumar RP, Pelanis E, Bugge R, Brun H, Palomar R, Aghayan DL et al. Use of mixed reality for surgery planning: assessment and development workflow. J Biomed Inform. 2020;112:100077.","DOI":"10.1016\/j.yjbinx.2020.100077"},{"key":"51_CR3","doi-asserted-by":"crossref","unstructured":"Ma L, Huang T, Wang J, Liao H. Visualization, registration and tracking techniques for augmented reality guided surgery: a review. Phys Med Biol. 2022.","DOI":"10.1088\/1361-6560\/acaf23"},{"key":"51_CR4","doi-asserted-by":"crossref","unstructured":"Twinanda AP, Shehata S, Mutter D, Marescaux J, De Mathelin M, Padoy N. Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging. 2016;36(1):86\u201397.","DOI":"10.1109\/TMI.2016.2593957"},{"key":"51_CR5","doi-asserted-by":"crossref","unstructured":"Pfeiffer M, Funke I, Robu MR, Bodenstedt S, Strenger L, Engelhardt S et al. Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation. Med Image Comput Comput Assist Interv. Springer. 2019:119\u201327.","DOI":"10.1007\/978-3-030-32254-0_14"},{"key":"51_CR6","doi-asserted-by":"crossref","unstructured":"Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycleconsistent adversarial networks. Proc IEEE Int Conf Comput Vis. 2017:2223\u201332.","DOI":"10.1109\/ICCV.2017.244"},{"key":"51_CR7","doi-asserted-by":"crossref","unstructured":"Park T, Liu MY, Wang TC, Zhu JY. Semantic image synthesis with spatially-adaptive normalization. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019:2337\u201346.","DOI":"10.1109\/CVPR.2019.00244"},{"key":"51_CR8","unstructured":"Soler L, Hostettler A,Agnus V, Charnoz A, Fasquel J, Moreau J et al. 3D image reconstruction for comparison of algorithm database: a patient specific anatomical and medical image database. IRCAD, Strasbourg, France, Tech. Rep. 2010;1(1)."},{"key":"51_CR9","unstructured":"Dibene JC, Dunn E. HoloLens 2 sensor streaming. arXiv preprint arXiv: 2211.02648. 2022."},{"key":"51_CR10","doi-asserted-by":"crossref","unstructured":"Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481\u2013 95.","DOI":"10.1109\/TPAMI.2016.2644615"},{"key":"51_CR11","doi-asserted-by":"crossref","unstructured":"Liu MY, Huang X, Mallya A, Karras T, Aila T, Lehtinen J et al. Few-shot unsupervised image-to-image translation. Proc IEEE Int Conf Comput Vis. 2019:10551\u201360.","DOI":"10.1109\/ICCV.2019.01065"}],"container-title":["Informatik aktuell","Bildverarbeitung f\u00fcr die Medizin 2024"],"original-title":[],"language":"de","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-658-44037-4_51","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,19]],"date-time":"2024-02-19T08:06:08Z","timestamp":1708329968000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-658-44037-4_51"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783658440367","9783658440374"],"references-count":11,"URL":"https:\/\/doi.org\/10.1007\/978-3-658-44037-4_51","relation":{},"ISSN":["1431-472X","2628-8958"],"issn-type":[{"type":"print","value":"1431-472X"},{"type":"electronic","value":"2628-8958"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"20 February 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BVM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"BVM Workshop","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Erlangen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Deutschland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 March 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 March 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bvm2024a","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.bvm-workshop.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}