{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T14:36:05Z","timestamp":1725460565582},"publisher-location":"Berlin, Heidelberg","reference-count":25,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783642374555"},{"type":"electronic","value":"9783642374562"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2013]]},"DOI":"10.1007\/978-3-642-37456-2_27","type":"book-chapter","created":{"date-parts":[[2013,4,5]],"date-time":"2013-04-05T11:14:37Z","timestamp":1365160477000},"page":"317-328","source":"Crossref","is-referenced-by-count":32,"title":["ProWSyn: Proximity Weighted Synthetic Oversampling Technique for Imbalanced Data Set Learning"],"prefix":"10.1007","author":[{"given":"Sukarna","family":"Barua","sequence":"first","affiliation":[]},{"given":"Md. Monirul","family":"Islam","sequence":"additional","affiliation":[]},{"given":"Kazuyuki","family":"Murase","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"issue":"1","key":"27_CR1","doi-asserted-by":"publisher","first-page":"7","DOI":"10.1145\/1007730.1007734","volume":"6","author":"G.M. Weiss","year":"2004","unstructured":"Weiss, G.M.: Mining with Rarity: A Unifying Framework. ACM SIGKDD Explorations Newsletter\u00a06(1), 7\u201319 (2004)","journal-title":"ACM SIGKDD Explorations Newsletter"},{"key":"27_CR2","unstructured":"Holte, R.C., Acker, L., Porter, B.W.: Concept Learning and the Problem of Small Disjuncts. In: Proc. Int\u2019l J. Conf. Artificial Intelligence, pp. 813\u2013818 (1989)"},{"issue":"1","key":"27_CR3","first-page":"81","volume":"1","author":"J.R. Quinlan","year":"1986","unstructured":"Quinlan, J.R.: Induction of Decision Trees. Machine Learning\u00a01(1), 81\u2013106 (1986)","journal-title":"Machine Learning"},{"key":"27_CR4","unstructured":"Murphy, P.M., Aha, D.W.: UCI repository of Machine learning databases. University of California Irvine, Department of Information and Computer Science"},{"key":"27_CR5","doi-asserted-by":"crossref","unstructured":"Lewis, D., Catlett, J.: Heterogeneous Uncertainty Sampling for Supervised Learning. In: Proc. of the Eleventh International Conference of Machine Learning, pp. 148\u2013156 (1994)","DOI":"10.1016\/B978-1-55860-335-6.50026-X"},{"issue":"1","key":"27_CR6","doi-asserted-by":"publisher","first-page":"291","DOI":"10.1023\/A:1009700419189","volume":"3","author":"T.E. Fawcett","year":"1997","unstructured":"Fawcett, T.E., Provost, F.: Adaptive Fraud Detection. Data Mining and Knowledge Discovery\u00a03(1), 291\u2013316 (1997)","journal-title":"Data Mining and Knowledge Discovery"},{"issue":"2\/3","key":"27_CR7","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1023\/A:1007452223027","volume":"30","author":"M. Kubat","year":"1998","unstructured":"Kubat, M., Holte, R.C., Matwin, S.: Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Machine Learning\u00a030(2\/3), 195\u2013215 (1998)","journal-title":"Machine Learning"},{"key":"27_CR8","unstructured":"Ling, C.X., Li, C.: Data Mining for Direct Marketing: Problems and Solutions. In: Proc. Int\u2019l Conf. on Knowledge Discovery & Data Mining (1998)"},{"key":"27_CR9","unstructured":"Japkowicz, N., Myers, C., Gluck, M.: A Novelty Detection Approach to Classification. In: Proc. of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 518\u2013523 (1995)"},{"issue":"10","key":"27_CR10","first-page":"1263","volume":"21","author":"H. He","year":"2009","unstructured":"He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng.\u00a021(10), 1263\u20131284 (2009)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"27_CR11","doi-asserted-by":"crossref","unstructured":"Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory Under Sampling for Class Imbalance Learning. In: Proc. Int\u2019l Conf. Data Mining, pp. 965\u2013969 (2006)","DOI":"10.1109\/ICDM.2006.68"},{"key":"27_CR12","unstructured":"Zhang, J., Mani, I.: KNN Approach to Unbalanced Data Distributions: A Case Study Involving Information Extraction. In: Proc. Int\u2019l Conf. Machine Learning, ICML 2003, Workshop Learning from Imbalanced Data Sets (2003)"},{"key":"27_CR13","unstructured":"Kubat, M., Matwin, S.: Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. In: Proc. Int\u2019l Conf. Machine Learning, pp. 179\u2013186 (1997)"},{"issue":"1","key":"27_CR14","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1145\/1007730.1007735","volume":"6","author":"G.E.A.P.A. Batista","year":"2004","unstructured":"Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. ACM SIGKDD Explorations Newsletter\u00a06(1), 20\u201329 (2004)","journal-title":"ACM SIGKDD Explorations Newsletter"},{"key":"27_CR15","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"N.V. Chawla","year":"2002","unstructured":"Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-Sampling Technique. J. Artificial Intelligence Research\u00a016, 321\u2013357 (2002)","journal-title":"J. Artificial Intelligence Research"},{"key":"27_CR16","doi-asserted-by":"crossref","unstructured":"Cieslak, D.A., Chawla, N.V.: Start Globally, Optimize Locally, Predict Globally: Improving Performance on Imbalanced Data. In: Proc. IEEE Int\u2019l Conf. Data Mining, pp. 143\u2013152 (2008)","DOI":"10.1109\/ICDM.2008.87"},{"key":"27_CR17","unstructured":"He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning. In: Proc. Int\u2019l J. Conf. Neural Networks, pp. 1322\u20131328 (2008)"},{"issue":"20","key":"27_CR18","doi-asserted-by":"publisher","first-page":"1624","DOI":"10.1109\/TNN.2010.2066988","volume":"21","author":"S. Chen","year":"2010","unstructured":"Chen, S., He, H., Garcia, E.A.: RAMOBoost: Ranked Minority Oversampling in Boosting. IEEE Trans. Neural Networks\u00a021(20), 1624\u20131642 (2010)","journal-title":"IEEE Trans. Neural Networks"},{"key":"27_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"735","DOI":"10.1007\/978-3-642-24958-7_85","volume-title":"Neural Information Processing","author":"S. Barua","year":"2011","unstructured":"Barua, S., Islam, M. M., Murase, K.: A Novel Synthetic Minority Oversampling Technique for Imbalanced Data Set Learning. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol.\u00a07063, pp. 735\u2013744. Springer, Heidelberg (2011)"},{"issue":"5","key":"27_CR20","doi-asserted-by":"crossref","first-page":"429","DOI":"10.3233\/IDA-2002-6504","volume":"6","author":"N. Japkowicz","year":"2000","unstructured":"Japkowicz, N., Stephen, S.: The Class Imbalance Problem: A Systematic Study. Intelligent Data Analysis\u00a06(5), 429\u2013449 (2000)","journal-title":"Intelligent Data Analysis"},{"key":"27_CR21","unstructured":"Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann, San Francisco (1993)"},{"key":"27_CR22","unstructured":"UCI Machine Learning Repository, \n \n http:\/\/archive.ics.uci.edu\/ml\/"},{"key":"27_CR23","unstructured":"Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Data Mining Researchers. Technical Report HPL-2003-4, HP Labs (2003)"},{"key":"27_CR24","doi-asserted-by":"publisher","DOI":"10.1002\/9781118165881","volume-title":"Nonparametric Statistics for Non-Statisticians: A step-by-Step Approach","author":"G.W. Corder","year":"2009","unstructured":"Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticians: A step-by-Step Approach. Wiley, New York (2009)"},{"key":"27_CR25","unstructured":"Critical Value Table of Wilcoxon Signed-Ranks Test, \n \n http:\/\/www.sussex.ac.uk\/Users\/grahamh\/RM1web\/WilcoxonTable2005.pdf"}],"container-title":["Lecture Notes in Computer Science","Advances in Knowledge Discovery and Data Mining"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-642-37456-2_27","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,12]],"date-time":"2019-05-12T03:53:21Z","timestamp":1557633201000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-642-37456-2_27"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2013]]},"ISBN":["9783642374555","9783642374562"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-642-37456-2_27","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2013]]}}}