{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T15:47:22Z","timestamp":1725551242174},"publisher-location":"Berlin, Heidelberg","reference-count":35,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783642365454"},{"type":"electronic","value":"9783642365461"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2013]]},"DOI":"10.1007\/978-3-642-36546-1_29","type":"book-chapter","created":{"date-parts":[[2013,2,25]],"date-time":"2013-02-25T00:54:25Z","timestamp":1361753665000},"page":"275-284","source":"Crossref","is-referenced-by-count":3,"title":["A Hybrid PSO-FSVM Model and Its Application to Imbalanced Classification of Mammograms"],"prefix":"10.1007","author":[{"given":"Hussein","family":"Samma","sequence":"first","affiliation":[]},{"given":"Chee Peng","family":"Lim","sequence":"additional","affiliation":[]},{"given":"Umi Kalthum","family":"Ngah","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"key":"29_CR1","first-page":"357","volume":"12","author":"E. Vegard","year":"2008","unstructured":"Vegard, E., Jonathan, V., Keith, P.: Enhancing network based intrusion detection for imbalanced data. Int. J. Know.-Based Intell. Eng. Syst.\u00a012, 357\u2013367 (2008)","journal-title":"Int. J. Know.-Based Intell. Eng. Syst."},{"key":"29_CR2","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1016\/j.neunet.2007.12.031","volume":"21","author":"M.A. Mazurowski","year":"2008","unstructured":"Mazurowski, M.A., Habas, P.A., Zurada, J.M., Lo, J.Y., Baker, J.A., Tourassi, G.D.: Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance. Neural Networks\u00a021, 427\u2013436 (2008)","journal-title":"Neural Networks"},{"key":"29_CR3","doi-asserted-by":"publisher","first-page":"679","DOI":"10.1007\/s10845-005-4371-1","volume":"16","author":"K. Chen","year":"2005","unstructured":"Chen, K., Lim, C., Lai, W.: Application of a Neural Fuzzy System with Rule Extraction to Fault Detection and Diagnosis. Journal of Intelligent Manufacturing\u00a016, 679\u2013691 (2005)","journal-title":"Journal of Intelligent Manufacturing"},{"key":"29_CR4","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1016\/j.aei.2005.09.002","volume":"20","author":"W.M.L. Eric","year":"2006","unstructured":"Eric, W.M.L., Lee, Y.Y., Lim, C.P., Tang, C.Y.: Application of a noisy data classification technique to determine the occurrence of flashover in compartment fires. Adv. Eng. Inform.\u00a020, 213\u2013222 (2006)","journal-title":"Adv. Eng. Inform."},{"key":"29_CR5","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1007\/s005210200003","volume":"10","author":"W.Y. Goh","year":"2002","unstructured":"Goh, W.Y., Lim, C.P., Peh, K.K., Subari, K.: Application of a Recurrent Neural Network to Prediction of Drug Dissolution Profiles. Neural Computing & Applications\u00a010, 311\u2013317 (2002)","journal-title":"Neural Computing & Applications"},{"key":"29_CR6","doi-asserted-by":"publisher","first-page":"648","DOI":"10.1109\/TPAMI.2005.64","volume":"27","author":"L. Chee-Peng","year":"2005","unstructured":"Chee-Peng, L., Jenn-Hwai, L., Mei-Ming, K.: A Hybrid Neural Network System for Pattern Classification Tasks with Missing Features. IEEE Trans. Pattern Anal. Mach. Intell.\u00a027, 648\u2013653 (2005)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"29_CR7","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1016\/j.ijpe.2005.02.010","volume":"104","author":"K. Hua Tan","year":"2006","unstructured":"Hua Tan, K., Peng Lim, C., Platts, K., Shen Koay, H.: An intelligent decision support system for manufacturing technology investments. International Journal of Production Economics\u00a0104, 179\u2013190 (2006)","journal-title":"International Journal of Production Economics"},{"key":"29_CR8","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1109\/TSMCC.2003.813150","volume":"33","author":"L. Chee Peng","year":"2003","unstructured":"Chee Peng, L., Harrison, R.F.: Online pattern classification with multiple neural network systems: an experimental study. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews\u00a033, 235\u2013247 (2003)","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews"},{"key":"29_CR9","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1016\/S0731-7085(02)00573-3","volume":"31","author":"C.P. Lim","year":"2003","unstructured":"Lim, C.P., Quek, S.S., Peh, K.K.: Prediction of drug release profiles using an intelligent learning system: an experimental study in transdermal iontophoresis. Journal of Pharmaceutical and Biomedical Analysis\u00a031, 159\u2013168 (2003)","journal-title":"Journal of Pharmaceutical and Biomedical Analysis"},{"key":"29_CR10","doi-asserted-by":"publisher","first-page":"4698","DOI":"10.1016\/j.eswa.2010.08.150","volume":"38","author":"C.-C. Hsu","year":"2011","unstructured":"Hsu, C.-C., Wang, K.-S., Chang, S.-H.: Bayesian decision theory for support vector machines: Imbalance measurement and feature optimization. Expert Systems with Applications\u00a038, 4698\u20134704 (2011)","journal-title":"Expert Systems with Applications"},{"key":"29_CR11","series-title":"Lecture Notes in Artificial Intelligence","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1007\/11731139_15","volume-title":"Advances in Knowledge Discovery and Data Mining","author":"Y. Liu","year":"2006","unstructured":"Liu, Y., An, A., Huang, X.: Boosting Prediction Accuracy on Imbalanced Datasets with SVM Ensembles. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol.\u00a03918, pp. 107\u2013118. Springer, Heidelberg (2006)"},{"key":"29_CR12","doi-asserted-by":"publisher","first-page":"617","DOI":"10.1016\/j.ipm.2010.11.007","volume":"47","author":"Y. Liu","year":"2011","unstructured":"Liu, Y., Yu, X., Huang, J.X., An, A.: Combining integrated sampling with SVM ensembles for learning from imbalanced datasets. Information Processing & Management\u00a047, 617\u2013631 (2011)","journal-title":"Information Processing & Management"},{"unstructured":"Veropoulos, K., Campbell, C., Cristianini, N.: Controlling the Sensitivity of Support Vector Machines. In: the International Joint Conference on AI, pp. 55\u201360 (1999)","key":"29_CR13"},{"key":"29_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"837","DOI":"10.1007\/11893028_93","volume-title":"Neural Information Processing","author":"P. Kang","year":"2006","unstructured":"Kang, P., Cho, S.: EUS SVMs: Ensemble of Under-Sampled SVMs for Data Imbalance Problems. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, vol.\u00a04232, pp. 837\u2013846. Springer, Heidelberg (2006)"},{"key":"29_CR15","doi-asserted-by":"publisher","first-page":"558","DOI":"10.1109\/TFUZZ.2010.2042721","volume":"18","author":"R. Batuwita","year":"2010","unstructured":"Batuwita, R., Palade, V.: FSVM-CIL: Fuzzy Support Vector Machines for Class Imbalance Learning. IEEE Transactions on Fuzzy Systems\u00a018, 558\u2013571 (2010)","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"29_CR16","doi-asserted-by":"publisher","first-page":"786","DOI":"10.1109\/TKDE.2005.95","volume":"17","author":"G. Wu","year":"2005","unstructured":"Wu, G., Chang, E.Y.: KBA: kernel boundary alignment considering imbalanced data distribution. IEEE Transactions on Knowledge and Data Engineering\u00a017, 786\u2013795 (2005)","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"29_CR17","doi-asserted-by":"publisher","first-page":"1093","DOI":"10.1016\/j.mcm.2010.11.040","volume":"54","author":"Z. Zhao","year":"2011","unstructured":"Zhao, Z., Zhong, P., Zhao, Y.: Learning SVM with weighted maximum margin criterion for classification of imbalanced data. Mathematical and Computer Modelling\u00a054, 1093\u20131099 (2011)","journal-title":"Mathematical and Computer Modelling"},{"key":"29_CR18","doi-asserted-by":"publisher","first-page":"8580","DOI":"10.1016\/j.eswa.2011.01.061","volume":"38","author":"J.P. Hwang","year":"2011","unstructured":"Hwang, J.P., Park, S., Kim, E.: A new weighted approach to imbalanced data classification problem via support vector machine with quadratic cost function. Expert Systems with Applications\u00a038, 8580\u20138585 (2011)","journal-title":"Expert Systems with Applications"},{"key":"29_CR19","doi-asserted-by":"publisher","first-page":"281","DOI":"10.1109\/TSMCB.2008.2002909","volume":"39","author":"T. Yuchun","year":"2009","unstructured":"Yuchun, T., Yan-Qing, Z., Nitesh, V.C., Sven, K.: SVMs modeling for highly imbalanced classification. Trans. Sys. Man Cyber. Part B\u00a039, 281\u2013288 (2009)","journal-title":"Trans. Sys. Man Cyber. Part B"},{"key":"29_CR20","series-title":"Lecture Notes in Artificial Intelligence","doi-asserted-by":"publisher","first-page":"264","DOI":"10.1007\/11941439_30","volume-title":"AI 2006: Advances in Artificial Intelligence","author":"T. Imam","year":"2006","unstructured":"Imam, T., Ting, K.M., Kamruzzaman, J.: z-SVM: An SVM for Improved Classification of Imbalanced Data. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol.\u00a04304, pp. 264\u2013273. Springer, Heidelberg (2006)"},{"key":"29_CR21","doi-asserted-by":"publisher","first-page":"464","DOI":"10.1109\/72.991432","volume":"13","author":"L. Chun-Fu","year":"2002","unstructured":"Chun-Fu, L., Sheng-De, W.: Fuzzy support vector machines. IEEE Transactions on Neural Networks\u00a013, 464\u2013471 (2002)","journal-title":"IEEE Transactions on Neural Networks"},{"key":"29_CR22","doi-asserted-by":"publisher","first-page":"1667","DOI":"10.1162\/089976603321891855","volume":"15","author":"S.S. Keerthi","year":"2003","unstructured":"Keerthi, S.S., Lin, C.-J.: Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation\u00a015, 1667\u20131689 (2003)","journal-title":"Neural Computation"},{"key":"29_CR23","doi-asserted-by":"publisher","first-page":"3211","DOI":"10.1016\/j.neucom.2008.04.027","volume":"71","author":"X.C. Guo","year":"2008","unstructured":"Guo, X.C., Yang, J.H., Wu, C.G., Wang, C.Y., Liang, Y.C.: A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing\u00a071, 3211\u20133215 (2008)","journal-title":"Neurocomputing"},{"key":"29_CR24","doi-asserted-by":"publisher","first-page":"1817","DOI":"10.1016\/j.eswa.2007.08.088","volume":"35","author":"S.-W. Lin","year":"2008","unstructured":"Lin, S.-W., Ying, K.-C., Chen, S.-C., Lee, Z.-J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications\u00a035, 1817\u20131824 (2008)","journal-title":"Expert Systems with Applications"},{"unstructured":"Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol.\u00a04, 1944, pp. 1942\u20131948 (1995)","key":"29_CR25"},{"key":"29_CR26","doi-asserted-by":"publisher","first-page":"240","DOI":"10.1109\/TEVC.2004.826071","volume":"8","author":"A. Ratnaweera","year":"2004","unstructured":"Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation\u00a08, 240\u2013255 (2004)","journal-title":"IEEE Transactions on Evolutionary Computation"},{"key":"29_CR27","doi-asserted-by":"publisher","first-page":"477","DOI":"10.1109\/TEVC.2009.2035921","volume":"14","author":"C. Sheng","year":"2010","unstructured":"Sheng, C., Xia, H., Harris, C.J.: Particle Swarm Optimization Aided Orthogonal Forward Regression for Unified Data Modeling. IEEE Transactions on Evolutionary Computation\u00a014, 477\u2013499 (2010)","journal-title":"IEEE Transactions on Evolutionary Computation"},{"key":"29_CR28","doi-asserted-by":"publisher","first-page":"3456","DOI":"10.1016\/j.neucom.2011.06.010","volume":"74","author":"M. Gao","year":"2011","unstructured":"Gao, M., Hong, X., Chen, S., Harris, C.J.: A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems. Neurocomputing\u00a074, 3456\u20133466 (2011)","journal-title":"Neurocomputing"},{"key":"29_CR29","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1109\/TNN.2006.882812","volume":"18","author":"H. Xia","year":"2007","unstructured":"Xia, H., Sheng, C., Harris, C.J.: A Kernel-Based Two-Class Classifier for Imbalanced Data Sets. IEEE Transactions on Neural Networks\u00a018, 28\u201341 (2007)","journal-title":"IEEE Transactions on Neural Networks"},{"unstructured":"The Mini-MIAS Database of Mammograms, \n \n http:\/\/peipa.essex.ac.uk","key":"29_CR30"},{"key":"29_CR31","doi-asserted-by":"publisher","first-page":"2089","DOI":"10.1016\/j.neucom.2010.02.013","volume":"73","author":"S. Li","year":"2010","unstructured":"Li, S., Tan, M.: Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm. Neurocomputing\u00a073, 2089\u20132096 (2010)","journal-title":"Neurocomputing"},{"unstructured":"Montgomery, D.C.: Design and analysis of experiments. Wiley (1997)","key":"29_CR32"},{"key":"29_CR33","doi-asserted-by":"publisher","first-page":"2807","DOI":"10.1016\/j.cor.2006.12.030","volume":"35","author":"Q.-K. Pan","year":"2008","unstructured":"Pan, Q.-K., Fatih Tasgetiren, M., Liang, Y.-C.: A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Computers & Operations Research\u00a035, 2807\u20132839 (2008)","journal-title":"Computers & Operations Research"},{"doi-asserted-by":"crossref","unstructured":"Wang, C.-H., Lin, T.-W.: Improved particle swarm optimization to minimize periodic preventive maintenance cost for series-parallel systems. Expert Systems with Applications 38, 8963\u20138969","key":"29_CR34","DOI":"10.1016\/j.eswa.2011.01.113"},{"key":"29_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1214\/aos\/1176344552","volume":"7","author":"B. Efron","year":"1979","unstructured":"Efron, B.: Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics\u00a07, 1\u201326 (1979)","journal-title":"The Annals of Statistics"}],"container-title":["Lecture Notes in Computer Science","Intelligent Information and Database Systems"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-642-36546-1_29","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,11]],"date-time":"2019-05-11T11:17:45Z","timestamp":1557573465000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-642-36546-1_29"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2013]]},"ISBN":["9783642365454","9783642365461"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-642-36546-1_29","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2013]]}}}