{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T16:03:37Z","timestamp":1725897817359},"publisher-location":"Berlin, Heidelberg","reference-count":20,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783642335051"},{"type":"electronic","value":"9783642335068"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2012]]},"DOI":"10.1007\/978-3-642-33506-8_9","type":"book-chapter","created":{"date-parts":[[2012,9,4]],"date-time":"2012-09-04T11:04:23Z","timestamp":1346756663000},"page":"64-71","source":"Crossref","is-referenced-by-count":0,"title":["Determining Reservoir Topologies from Short-Term Memory in Echo State Networks"],"prefix":"10.1007","author":[{"given":"Qianli","family":"Ma","sequence":"first","affiliation":[]},{"given":"Weibiao","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"issue":"3","key":"9_CR1","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1016\/j.cosrev.2009.03.005","volume":"3","author":"M. Luko\u0161evi\u010dius","year":"2009","unstructured":"Luko\u0161evi\u010dius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review\u00a03(3), 127\u2013149 (2009)","journal-title":"Computer Science Review"},{"key":"9_CR2","unstructured":"Jaeger, H.: The \u201cecho state\u201d approach to analysing and training recurrent neural networks. German National Research Center for Information Technology, Tech. Rep. GMD Report. 148 (2001)"},{"key":"9_CR3","doi-asserted-by":"publisher","first-page":"78","DOI":"10.1126\/science.1091277","volume":"304","author":"H. Jaeger","year":"2004","unstructured":"Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science\u00a0304, 78\u201380 (2004)","journal-title":"Science"},{"issue":"11","key":"9_CR4","doi-asserted-by":"publisher","first-page":"2531","DOI":"10.1162\/089976602760407955","volume":"14","author":"W. Maass","year":"2002","unstructured":"Maass, W., Natschl\u00e4ger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation\u00a014(11), 2531\u20132560 (2002)","journal-title":"Neural Computation"},{"key":"9_CR5","unstructured":"Jaeger, H.: Short term memory in echo state networks. German National Research Center for Information Technology, Technical Report GMD report. 152 (2002)"},{"issue":"7","key":"9_CR6","doi-asserted-by":"publisher","first-page":"1413","DOI":"10.1162\/089976604323057443","volume":"16","author":"N. Bertschinger","year":"2004","unstructured":"Bertschinger, N., Natschl\u00e4ger, T.: Real-time computation at the edge of chaos in recurrent neural networks. Neural Computation\u00a016(7), 1413\u20131436 (2004)","journal-title":"Neural Computation"},{"issue":"3","key":"9_CR7","doi-asserted-by":"publisher","first-page":"323","DOI":"10.1016\/j.neunet.2007.04.017","volume":"20","author":"R. Legenstein","year":"2007","unstructured":"Legenstein, R., Maass, W.: Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks\u00a020(3), 323\u2013334 (2007)","journal-title":"Neural Networks"},{"key":"9_CR8","doi-asserted-by":"crossref","unstructured":"Legenstein, R., Maass, W.: What makes a dynamical system computationally powerful? In: New Directions in Statistical Signal Processing: From Systems to Brain, pp. 127\u2013154. MIT Press (2007)","DOI":"10.7551\/mitpress\/4977.003.0008"},{"key":"9_CR9","doi-asserted-by":"crossref","unstructured":"Boedecker, J., Obst, O., Lizier, J.T., Mayer, N.M., Asada, M.: Information Processing in Echo State Networks at the Edge of Chaos. Theory in Biosciences (2011), doi:10.1007\/s12064-011-0146-8","DOI":"10.1007\/s12064-011-0146-8"},{"issue":"5","key":"9_CR10","doi-asserted-by":"publisher","first-page":"1272","DOI":"10.1162\/neco.2009.01-09-947","volume":"22","author":"L. B\u00fcsing","year":"2010","unstructured":"B\u00fcsing, L., Schrauwen, B., Legenstein, R.: Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Computation\u00a022(5), 1272\u20131311 (2010)","journal-title":"Neural Computation"},{"issue":"14","key":"9_CR11","doi-asserted-by":"publisher","first-page":"148102","DOI":"10.1103\/PhysRevLett.92.148102","volume":"92","author":"O. White","year":"2004","unstructured":"White, O., Lee, D., Sompolinsky, H.: Short-term memory in orthogonal neural networks. Physical Review Letters\u00a092(14), 148102 (2004)","journal-title":"Physical Review Letters"},{"key":"9_CR12","doi-asserted-by":"publisher","first-page":"18970","DOI":"10.1073\/pnas.0804451105","volume":"105","author":"S. Ganguli","year":"2008","unstructured":"Ganguli, S., Huh, D., Sompolinsky, H.: Memory traces in dynamical systems. Proceedings of the National Academy of Sciences\u00a0105, 18970\u201318975 (2008)","journal-title":"Proceedings of the National Academy of Sciences"},{"issue":"3","key":"9_CR13","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1016\/j.neunet.2009.08.008","volume":"23","author":"M. Hermans","year":"2010","unstructured":"Hermans, M., Schrauwen, B.: Memory in linear recurrent neural networks in continuous time. Neural Networks\u00a023(3), 341\u2013355 (2010)","journal-title":"Neural Networks"},{"key":"9_CR14","doi-asserted-by":"crossref","unstructured":"Hermans, M., Schrauwen, B.: Memory in reservoirs for high dimensional input. In: International Joint Conference on Neural Networks, pp. 1\u20137 (2010)","DOI":"10.1109\/IJCNN.2010.5596884"},{"key":"9_CR15","unstructured":"Ganguli, S., Sompolinsky, H.: Short-term memory in neuronal networks through dynamical compressed sensing. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol.\u00a023, pp. 667\u2013675 (2010)"},{"issue":"2","key":"9_CR16","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1109\/MSP.2007.914731","volume":"25","author":"E. Candes","year":"2008","unstructured":"Candes, E., Wakin, M.: An introduction to compressive sampling. IEEE Signal Processing Magazine\u00a025(2), 21\u201330 (2008)","journal-title":"IEEE Signal Processing Magazine"},{"issue":"1","key":"9_CR17","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1109\/TNN.2010.2089641","volume":"22","author":"A. Rodan","year":"2011","unstructured":"Rodan, A., Tino, P.: Minimum Complexity Echo State Network. IEEE Transactions on Neural Networks\u00a022(1), 131\u2013144 (2011)","journal-title":"IEEE Transactions on Neural Networks"},{"issue":"2","key":"9_CR18","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1109\/TNN.2006.885113","volume":"18","author":"Z. Shi","year":"2007","unstructured":"Shi, Z., Han, M.: Support vector echo-state machine for chaotic time-series prediction. IEEE Transactions on Neural Networks\u00a018(2), 359\u2013372 (2007)","journal-title":"IEEE Transactions on Neural Networks"},{"issue":"3","key":"9_CR19","doi-asserted-by":"publisher","first-page":"820","DOI":"10.1109\/TNN.2006.872357","volume":"17","author":"M.R. Buehner","year":"2006","unstructured":"Buehner, M.R., Young, P.M.: A Tighter Bound for the Echo State Property. IEEE Transaction on Neural Networks\u00a017(3), 820\u2013824 (2006)","journal-title":"IEEE Transaction on Neural Networks"},{"issue":"1","key":"9_CR20","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1109\/TNNLS.2011.2178562","volume":"23","author":"B. Zhang","year":"2012","unstructured":"Zhang, B., Miller, D.J., Wang, Y.: Nonlinear System Modeling With Random Matrices: Echo State Networks Revisited. IEEE Transaction on Neural Networks\u00a023(1), 175\u2013182 (2012)","journal-title":"IEEE Transaction on Neural Networks"}],"container-title":["Communications in Computer and Information Science","Pattern Recognition"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-642-33506-8_9.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,28]],"date-time":"2024-04-28T22:31:11Z","timestamp":1714343471000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-642-33506-8_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012]]},"ISBN":["9783642335051","9783642335068"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-642-33506-8_9","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2012]]}}}