{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T21:40:02Z","timestamp":1743198002682,"version":"3.40.3"},"publisher-location":"Berlin, Heidelberg","reference-count":14,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783642304477"},{"type":"electronic","value":"9783642304484"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2012]]},"DOI":"10.1007\/978-3-642-30448-4_28","type":"book-chapter","created":{"date-parts":[[2012,5,25]],"date-time":"2012-05-25T15:34:21Z","timestamp":1337960061000},"page":"223-230","source":"Crossref","is-referenced-by-count":1,"title":["Clustering of High Dimensional Data Streams"],"prefix":"10.1007","author":[{"given":"Sotiris K.","family":"Tasoulis","sequence":"first","affiliation":[]},{"given":"Dimirtis K.","family":"Tasoulis","sequence":"additional","affiliation":[]},{"given":"Vassilis P.","family":"Plagianakos","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"key":"28_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1007\/3-540-49257-7_15","volume-title":"Database Theory - ICDT\u201999","author":"K. Beyer","year":"1998","unstructured":"Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When Is Nearest Neighbor Meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol.\u00a01540, pp. 217\u2013235. Springer, Heidelberg (1998)"},{"key":"28_CR2","unstructured":"Blake, C., Merz, C.: UCI repository of machine learning databases (1998)"},{"key":"28_CR3","doi-asserted-by":"crossref","unstructured":"Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: 2006 SIAM Conference on Data Mining, pp. 328\u2013339 (2006)","DOI":"10.1137\/1.9781611972764.29"},{"key":"28_CR4","unstructured":"Domingos, P., Hulten, G., Edu, P.C.W., Edu, C.H.G.W.: A general method for scaling up machine learning algorithms and its application to clustering. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 106\u2013113. Morgan Kaufmann (2001)"},{"key":"28_CR5","doi-asserted-by":"crossref","unstructured":"Heinz, C., Seeger, B.: Towards Kernel Density Estimation over Streaming Data. In: International Conference on Management of Data. Computer Society of India, COMAD 2006, Delhi, India (December 2006)","DOI":"10.1145\/1183614.1183772"},{"key":"28_CR6","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1016\/0022-247X(85)90131-3","volume":"106","author":"E. Oja","year":"1985","unstructured":"Oja, E., Karhunen, J.: On Stochastic Approximation of the Eigenvectors and Eigenvalues of the Expectation of a Random Matrix. Journal of Mathematical Analysis and Applications\u00a0106, 69\u201384 (1985)","journal-title":"Journal of Mathematical Analysis and Applications"},{"key":"28_CR7","unstructured":"Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-based external cluster evaluation measure. In: 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 410\u2013420 (2007)"},{"issue":"6","key":"28_CR8","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1016\/0893-6080(89)90044-0","volume":"2","author":"T.D. Sanger","year":"1989","unstructured":"Sanger, T.D.: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks\u00a02(6), 459\u2013473 (1989)","journal-title":"Neural Networks"},{"key":"28_CR9","doi-asserted-by":"crossref","unstructured":"Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley Series in Probability and Statistics. Wiley (September 1992)","DOI":"10.1002\/9780470316849"},{"key":"28_CR10","doi-asserted-by":"crossref","unstructured":"Steinbach, M., Ert\u00f6z, L., Kumar, V.: The challenges of clustering high dimensional data. New Vistas in Statistical Physics: Applications in Econophysics, Bioinformatics, and Pattern Recognition (2003)","DOI":"10.1007\/978-3-662-08968-2_16"},{"key":"28_CR11","doi-asserted-by":"publisher","first-page":"3391","DOI":"10.1016\/j.patcog.2010.05.025","volume":"43","author":"S. Tasoulis","year":"2010","unstructured":"Tasoulis, S., Tasoulis, D., Plagianakos, V.: Enhancing Principal Direction Divisive Clustering. Pattern Recognition\u00a043, 3391\u20133411 (2010)","journal-title":"Pattern Recognition"},{"key":"28_CR12","doi-asserted-by":"crossref","unstructured":"Weng, J., Zhang, Y., Hwang, W.: Candid covariance-free incremental principal component analysis (2003)","DOI":"10.1007\/978-3-540-45080-1_122"},{"key":"28_CR13","unstructured":"Zhang, Y., Weng, J.: Convergence analysis of complementary candid incremental principal component analysis (2001)"},{"key":"28_CR14","doi-asserted-by":"crossref","unstructured":"Zhou, A., Cai, Z., Wei, L., Qian, W.: M-kernel merging: Towards density estimation over data streams. In: International Conference on Database Systems for Advanced Applications, p. 285 (2003)","DOI":"10.1109\/DASFAA.2003.1192393"}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence: Theories and Applications"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-642-30448-4_28.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T21:25:22Z","timestamp":1743197122000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-642-30448-4_28"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012]]},"ISBN":["9783642304477","9783642304484"],"references-count":14,"URL":"https:\/\/doi.org\/10.1007\/978-3-642-30448-4_28","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2012]]}}}