{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T12:47:32Z","timestamp":1725626852386},"publisher-location":"Berlin, Heidelberg","reference-count":36,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783642248542"},{"type":"electronic","value":"9783642248559"}],"license":[{"start":{"date-parts":[[2011,1,1]],"date-time":"2011-01-01T00:00:00Z","timestamp":1293840000000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2011,1,1]],"date-time":"2011-01-01T00:00:00Z","timestamp":1293840000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2011]]},"DOI":"10.1007\/978-3-642-24855-9_23","type":"book-chapter","created":{"date-parts":[[2011,10,28]],"date-time":"2011-10-28T07:05:26Z","timestamp":1319785526000},"page":"260-271","source":"Crossref","is-referenced-by-count":3,"title":["Estimating the Class Posterior Probabilities in Protein Secondary Structure Prediction"],"prefix":"10.1007","author":[{"given":"Yann","family":"Guermeur","sequence":"first","affiliation":[]},{"given":"Fabienne","family":"Thomarat","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"key":"23_CR1","doi-asserted-by":"publisher","first-page":"865","DOI":"10.1016\/0022-2836(88)90564-5","volume":"202","author":"N. Qian","year":"1988","unstructured":"Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology\u00a0202, 865\u2013884 (1988)","journal-title":"Journal of Molecular Biology"},{"key":"23_CR2","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1006\/jmbi.1999.3091","volume":"292","author":"D.T. Jones","year":"1999","unstructured":"Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology\u00a0292, 195\u2013202 (1999)","journal-title":"Journal of Molecular Biology"},{"key":"23_CR3","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1002\/prot.10082","volume":"47","author":"G. Pollastri","year":"2002","unstructured":"Pollastri, G., Przybylski, D., Rost, B., Baldi, P.: Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins\u00a047, 228\u2013235 (2002)","journal-title":"Proteins"},{"key":"23_CR4","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1093\/nar\/gkn238","volume":"36","author":"C. Cole","year":"2008","unstructured":"Cole, C., Barber, J.D., Barton, G.J.: The Jpred 3 secondary structure prediction server. Nucleic Acids Research\u00a036, W197\u2013W201 (2008)","journal-title":"Nucleic Acids Research"},{"key":"23_CR5","doi-asserted-by":"publisher","first-page":"437","DOI":"10.1186\/1471-2105-10-437","volume":"10","author":"P. Kountouris","year":"2009","unstructured":"Kountouris, P., Hirst, J.D.: Prediction of backbone dihedral angles and protein secondary structure using support vector machines. BMC Bioinformatics\u00a010, 437 (2009)","journal-title":"BMC Bioinformatics"},{"key":"23_CR6","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511624216","volume-title":"Neural Network Learning: Theoretical Foundations","author":"M. Anthony","year":"1999","unstructured":"Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge (1999)"},{"key":"23_CR7","doi-asserted-by":"publisher","first-page":"397","DOI":"10.1006\/jmbi.2001.4580","volume":"308","author":"S. Hua","year":"2001","unstructured":"Hua, S., Sun, Z.: A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. Journal of Molecular Biology\u00a0308, 397\u2013407 (2001)","journal-title":"Journal of Molecular Biology"},{"key":"23_CR8","doi-asserted-by":"publisher","first-page":"168","DOI":"10.1007\/s100440200015","volume":"5","author":"Y. Guermeur","year":"2002","unstructured":"Guermeur, Y.: Combining discriminant models with new multi-class SVMs. Pattern Analysis and Applications\u00a05, 168\u2013179 (2002)","journal-title":"Pattern Analysis and Applications"},{"key":"23_CR9","doi-asserted-by":"publisher","first-page":"305","DOI":"10.1016\/j.neucom.2003.10.004","volume":"56","author":"Y. Guermeur","year":"2004","unstructured":"Guermeur, Y., Pollastri, G., Elisseeff, A., Zelus, D., Paugam-Moisy, H., Baldi, P.: Combining protein secondary structure prediction models with ensemble methods of optimal complexity. Neurocomputing\u00a056, 305\u2013327 (2004)","journal-title":"Neurocomputing"},{"key":"23_CR10","unstructured":"Nguyen, M.N., Rajapakse, J.C.: Two-stage multi-class support vector machines to protein secondary structure prediction. In: 10th Pacific Symposium on Biocomputing, pp. 346\u2013357 (2005)"},{"key":"23_CR11","doi-asserted-by":"publisher","first-page":"461","DOI":"10.1162\/neco.1991.3.4.461","volume":"3","author":"M.D. Richard","year":"1991","unstructured":"Richard, M.D., Lippmann, R.P.: Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation\u00a03, 461\u2013483 (1991)","journal-title":"Neural Computation"},{"key":"23_CR12","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1162\/neco.1996.8.1.41","volume":"8","author":"R. Rojas","year":"1996","unstructured":"Rojas, R.: A short proof of the posterior probability property of classifier neural networks. Neural Computation\u00a08, 41\u201343 (1996)","journal-title":"Neural Computation"},{"key":"23_CR13","doi-asserted-by":"publisher","first-page":"152","DOI":"10.1093\/bioinformatics\/bth487","volume":"21","author":"K. Lin","year":"2005","unstructured":"Lin, K., Simossis, V.A., Taylor, W.R., Heringa, J.: A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics\u00a021, 152\u2013159 (2005)","journal-title":"Bioinformatics"},{"key":"23_CR14","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1109\/5.18626","volume":"77","author":"L.R. Rabiner","year":"1989","unstructured":"Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE\u00a077, 257\u2013286 (1989)","journal-title":"Proceedings of the IEEE"},{"key":"23_CR15","first-page":"2551","volume":"8","author":"Y. Guermeur","year":"2007","unstructured":"Guermeur, Y.: VC theory of large margin multi-category classifiers. Journal of Machine Learning Research\u00a08, 2551\u20132594 (2007)","journal-title":"Journal of Machine Learning Research"},{"key":"23_CR16","volume-title":"Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond","author":"B. Sch\u00f6lkopf","year":"2002","unstructured":"Sch\u00f6lkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge (2002)"},{"key":"23_CR17","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511809682","volume-title":"Kernel Methods for Pattern Analysis","author":"J. Shawe-Taylor","year":"2004","unstructured":"Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)"},{"key":"23_CR18","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-9096-9","volume-title":"Reproducing Kernel Hilbert Spaces in Probability and Statistics","author":"A. Berlinet","year":"2004","unstructured":"Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers, Boston (2004)"},{"key":"23_CR19","unstructured":"Wahba, G.: Multivariate function and operator estimation, based on smoothing splines and reproducing kernels. In: Casdagli, M., Eubank, S. (eds.) Nonlinear Modeling and Forecasting, SFI Studies in the Sciences of Complexity, vol.\u00a0XII, pp. 95\u2013112. Addison-Wesley (1992)"},{"key":"23_CR20","unstructured":"Guermeur, Y.: A generic model of multi-class support vector machine. International Journal of Intelligent Information and Database Systems (accepted)"},{"key":"23_CR21","unstructured":"Weston, J., Watkins, C.: Multi-class support vector machines. Technical Report CSD-TR-98-04, Royal Holloway, University of London, Department of Computer Science (1998)"},{"key":"23_CR22","first-page":"265","volume":"2","author":"K. Crammer","year":"2001","unstructured":"Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research\u00a02, 265\u2013292 (2001)","journal-title":"Journal of Machine Learning Research"},{"key":"23_CR23","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1198\/016214504000000098","volume":"99","author":"Y. Lee","year":"2004","unstructured":"Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association\u00a099, 67\u201381 (2004)","journal-title":"Journal of the American Statistical Association"},{"key":"23_CR24","doi-asserted-by":"crossref","first-page":"73","DOI":"10.15388\/Informatica.2011.315","volume":"22","author":"Y. Guermeur","year":"2011","unstructured":"Guermeur, Y., Monfrini, E.: A quadratic loss multi-class SVM for which a radius-margin bound applies. Informatica\u00a022, 73\u201396 (2011)","journal-title":"Informatica"},{"key":"23_CR25","doi-asserted-by":"publisher","first-page":"3389","DOI":"10.1093\/nar\/25.17.3389","volume":"25","author":"S.F. Altschul","year":"1997","unstructured":"Altschul, S.F., Madden, T.L., Sch\u00e4ffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research\u00a025, 3389\u20133402 (1997)","journal-title":"Nucleic Acids Research"},{"key":"23_CR26","doi-asserted-by":"crossref","first-page":"193","DOI":"10.7551\/mitpress\/4057.003.0012","volume-title":"Kernel Methods in Computational Biology","author":"Y. Guermeur","year":"2004","unstructured":"Guermeur, Y., Lifchitz, A., Vert, R.: A kernel for protein secondary structure prediction. In: Sch\u00f6lkopf, B., Tsuda, K., Vert, J.-P. (eds.) Kernel Methods in Computational Biology, pp. 193\u2013206. The MIT Press, Cambridge (2004)"},{"key":"23_CR27","first-page":"2293","volume":"12","author":"F. Lauer","year":"2011","unstructured":"Lauer, F., Guermeur, Y.: MSVMpack: a multi-class support vector machine package. Journal of Machine Learning Research\u00a012, 2293\u20132296 (2011)","journal-title":"Journal of Machine Learning Research"},{"key":"23_CR28","doi-asserted-by":"crossref","first-page":"61","DOI":"10.7551\/mitpress\/1113.003.0008","volume-title":"Advances in Large Margin Classifiers","author":"J.C. Platt","year":"2000","unstructured":"Platt, J.C.: Probabilities for SV machines. In: Smola, A.J., Bartlett, P.L., Sch\u00f6lkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 61\u201373. The MIT Press, Cambridge (2000)"},{"key":"23_CR29","volume-title":"Applied Logistic Regression","author":"D.W. Hosmer","year":"1989","unstructured":"Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. Wiley, London (1989)"},{"key":"23_CR30","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1007\/s10994-007-5018-6","volume":"68","author":"H.-T. Lin","year":"2007","unstructured":"Lin, H.-T., Lin, C.-J., Weng, R.C.: A note on Platt\u2019s probabilistic outputs for support vector machines. Machine Learning\u00a068, 267\u2013276 (2007)","journal-title":"Machine Learning"},{"key":"23_CR31","unstructured":"Guermeur, Y.: Combining multi-class SVMs with linear ensemble methods that estimate the class posterior probabilities. Communications in Statistics (submitted)"},{"key":"23_CR32","doi-asserted-by":"publisher","first-page":"508","DOI":"10.1002\/(SICI)1097-0134(19990301)34:4<508::AID-PROT10>3.0.CO;2-4","volume":"34","author":"J.A. Cuff","year":"1999","unstructured":"Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins\u00a034, 508\u2013519 (1999)","journal-title":"Proteins"},{"key":"23_CR33","doi-asserted-by":"publisher","first-page":"2577","DOI":"10.1002\/bip.360221211","volume":"22","author":"W. Kabsch","year":"1983","unstructured":"Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers\u00a022, 2577\u20132637 (1983)","journal-title":"Biopolymers"},{"key":"23_CR34","doi-asserted-by":"publisher","first-page":"412","DOI":"10.1093\/bioinformatics\/16.5.412","volume":"16","author":"P. Baldi","year":"2000","unstructured":"Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics\u00a016, 412\u2013424 (2000)","journal-title":"Bioinformatics"},{"key":"23_CR35","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1089\/cmb.1996.3.163","volume":"3","author":"S.K. Riis","year":"1996","unstructured":"Riis, S.K., Krogh, A.: Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. Journal of Computational Biology\u00a03, 163\u2013183 (1996)","journal-title":"Journal of Computational Biology"},{"key":"23_CR36","doi-asserted-by":"publisher","first-page":"451","DOI":"10.1214\/aos\/1028144844","volume":"26","author":"T. Hastie","year":"1998","unstructured":"Hastie, T., Tibshirani, R.: Classification by pairwise coupling. The Annals of Statistics\u00a026, 451\u2013471 (1998)","journal-title":"The Annals of Statistics"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition in Bioinformatics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-642-24855-9_23","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,14]],"date-time":"2024-04-14T06:39:05Z","timestamp":1713076745000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-642-24855-9_23"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2011]]},"ISBN":["9783642248542","9783642248559"],"references-count":36,"URL":"https:\/\/doi.org\/10.1007\/978-3-642-24855-9_23","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2011]]}}}