{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T01:19:48Z","timestamp":1725585588058},"publisher-location":"Berlin, Heidelberg","reference-count":13,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783642217371"},{"type":"electronic","value":"9783642217388"}],"license":[{"start":{"date-parts":[[2011,1,1]],"date-time":"2011-01-01T00:00:00Z","timestamp":1293840000000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2011,1,1]],"date-time":"2011-01-01T00:00:00Z","timestamp":1293840000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2011]]},"DOI":"10.1007\/978-3-642-21738-8_2","type":"book-chapter","created":{"date-parts":[[2011,6,12]],"date-time":"2011-06-12T15:53:18Z","timestamp":1307893998000},"page":"9-16","source":"Crossref","is-referenced-by-count":3,"title":["Weakly Supervised Learning of Foreground-Background Segmentation Using Masked RBMs"],"prefix":"10.1007","author":[{"given":"Nicolas","family":"Heess","sequence":"first","affiliation":[]},{"given":"Nicolas","family":"Le Roux","sequence":"additional","affiliation":[]},{"given":"John","family":"Winn","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"issue":"8","key":"2_CR1","doi-asserted-by":"publisher","first-page":"1771","DOI":"10.1162\/089976602760128018","volume":"14","author":"G.E. Hinton","year":"2002","unstructured":"Hinton, G.E.: Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation\u00a014(8), 1771\u20131800 (2002)","journal-title":"Neural Computation"},{"key":"2_CR2","doi-asserted-by":"publisher","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","volume":"18","author":"G.E. Hinton","year":"2006","unstructured":"Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Computation\u00a018, 1527\u20131554 (2006)","journal-title":"Neural Computation"},{"doi-asserted-by":"crossref","unstructured":"Lee, H., Gross, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML (2009)","key":"2_CR3","DOI":"10.1145\/1553374.1553453"},{"issue":"3","key":"2_CR4","doi-asserted-by":"publisher","first-page":"593","DOI":"10.1162\/NECO_a_00086","volume":"23","author":"N. Roux Le","year":"2011","unstructured":"Le Roux, N., Heess, N., Shotton, J., Winn, J.: Learning a Generative Model of Images by Factoring Appearance and Shape. Neural Computation\u00a023(3), 593\u2013650 (2011)","journal-title":"Neural Computation"},{"unstructured":"Huang, G.B., Rames, M., Berg, T., Learned-Miller, E.: Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. TR 07-49; Univ. of Mass., Amherst (2007)","key":"2_CR5"},{"doi-asserted-by":"crossref","unstructured":"Ranzato, M., Hinton, G.: Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines. In: CVPR (2010)","key":"2_CR6","DOI":"10.1109\/CVPR.2010.5539962"},{"unstructured":"Salakhutdinov, R., Hinton, G.E.: Deep Boltzmann Machines. In: AISTATS (2009)","key":"2_CR7"},{"unstructured":"Tang, Y.: Gated Boltzmann Machine for Recognition under Occlusion. In: NIPS Workshop on Transfer Learning by Learning Rich Generative Models (2010)","key":"2_CR8"},{"doi-asserted-by":"crossref","unstructured":"Tieleman, T.: Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. In: ICML (2008)","key":"2_CR9","DOI":"10.1145\/1390156.1390290"},{"issue":"5","key":"2_CR10","doi-asserted-by":"publisher","first-page":"625","DOI":"10.1109\/83.334981","volume":"3","author":"J.Y.A. Wang","year":"1994","unstructured":"Wang, J.Y.A., Adelson, E.H.: Representing moving images with layers. IEEE Transactions on Image Processing\u00a03(5), 625 (1994)","journal-title":"IEEE Transactions on Image Processing"},{"issue":"5","key":"2_CR11","doi-asserted-by":"publisher","first-page":"1039","DOI":"10.1162\/089976604773135096","volume":"16","author":"C.K.I. Williams","year":"2004","unstructured":"Williams, C.K.I., Titsias, M.K.: Greedy Learning of Multiple Objects in Images using Robust Statistics and Factorial Learning. Neural Comp.\u00a016(5), 1039\u20131062 (2004)","journal-title":"Neural Comp."},{"key":"2_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"88","DOI":"10.1007\/978-3-642-12304-7_9","volume-title":"Computer Vision \u2013 ACCV 2009","author":"L. Wolf","year":"2010","unstructured":"Wolf, L., Hassner, T., Taigman, Y.: Similarity scores based on background samples. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009. LNCS, vol.\u00a05995, pp. 88\u201397. Springer, Heidelberg (2010)"},{"unstructured":"Suppl. Material, \n \n http:\/\/homepages.inf.ed.ac.uk\/s0677090\/papers\/icannSuppl.pdf","key":"2_CR13"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2011"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-642-21738-8_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,1,19]],"date-time":"2019-01-19T16:38:44Z","timestamp":1547915924000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-642-21738-8_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2011]]},"ISBN":["9783642217371","9783642217388"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-3-642-21738-8_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2011]]}}}