{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T21:07:09Z","timestamp":1725570429371},"publisher-location":"Berlin, Heidelberg","reference-count":20,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783642175626"},{"type":"electronic","value":"9783642175633"}],"license":[{"start":{"date-parts":[[2010,1,1]],"date-time":"2010-01-01T00:00:00Z","timestamp":1262304000000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2010]]},"DOI":"10.1007\/978-3-642-17563-3_67","type":"book-chapter","created":{"date-parts":[[2010,12,3]],"date-time":"2010-12-03T20:50:50Z","timestamp":1291409450000},"page":"575-582","source":"Crossref","is-referenced-by-count":0,"title":["Dimensionality Reduction and Optimum Feature Selection in Designing Efficient Classifiers"],"prefix":"10.1007","author":[{"given":"A. K.","family":"Das","sequence":"first","affiliation":[]},{"given":"J.","family":"Sil","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"key":"67_CR1","doi-asserted-by":"crossref","unstructured":"Carter, C., Hamilton, H.: Efficient attribute-oriented generalization for knowledge discovery from large databases. IEEE Trans. Knowledge and Data Engineering\u00a010, 193\u2013208 (1998)","DOI":"10.1109\/69.683752"},{"key":"67_CR2","doi-asserted-by":"crossref","unstructured":"Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and differences. In: Proc. 1999 Int. Conf. Knowledge Discovery and Data Mining, KDD 1999, pp. 43\u201352 (1999)","DOI":"10.1145\/312129.312191"},{"key":"67_CR3","doi-asserted-by":"crossref","unstructured":"Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H.: Finding interesting rules from large sets of discovered association rules. In: Proceedings of the 3rd International Conference on Information and Knowledge Management (CIKM 1994), pp. 401\u2013407. ACM Press, New York (1994)","DOI":"10.1145\/191246.191314"},{"key":"67_CR4","doi-asserted-by":"crossref","unstructured":"Pawlak, Z.: Rough set theory and its applications to data analysis. Cybernetics and systems\u00a029, 661\u2013688 (1998)","DOI":"10.1080\/019697298125470"},{"key":"67_CR5","doi-asserted-by":"crossref","unstructured":"Pawlak, Z.: Rough sets \u2013 Theoritical aspects of reasoning about data, vol.\u00a0229. Kluwer Academic Publishers, Dordrecht (1991)","DOI":"10.1007\/978-94-011-3534-4_7"},{"key":"67_CR6","unstructured":"Agrawal, R., Srikant, R.: Fast Algorithm for Mining Association Rules. In: Proc. of the 20th VLDB Conference, pp. 487\u2013499 (1994)"},{"key":"67_CR7","unstructured":"Ziarko, W.: Rough sets as a methodology for data mining. In: Rough Sets in Knowledge Discovery 1: Methodology and Applications, pp. 554\u2013576. Physica-Verlag, Heidelberg (1998)"},{"key":"67_CR8","doi-asserted-by":"crossref","unstructured":"Swiniarski, W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recog. Letters\u00a024(6), 833\u2013849 (2003)","DOI":"10.1016\/S0167-8655(02)00196-4"},{"key":"67_CR9","unstructured":"The Apriori Algorithm (a Tutorial) Markus Hegland CMA, Australian National University John Dedman Building, Canberra ACT 0200, Australia"},{"key":"67_CR10","doi-asserted-by":"crossref","unstructured":"Pawlak, Z.: Drawing Conclusions from Data-The Rough Set Way. IJIS\u00a016, 3\u201311 (2001)","DOI":"10.1002\/1098-111X(200101)16:1<3::AID-INT2>3.0.CO;2-I"},{"key":"67_CR11","unstructured":"Witten, I.H., Frank, E.: Data Mining:Practical Machine Learning Tools and Techniques with Java Implementations. MK (2000)"},{"key":"67_CR12","unstructured":"Han, J., Kamber, M.: Data Miningg:Concepts and Techniques. MK (2001)"},{"key":"67_CR13","doi-asserted-by":"crossref","unstructured":"Pawlak, Z.: Rough set. Int. J. of Computer and Information Science\u00a011, 341\u2013356 (1982)","DOI":"10.1007\/BF01001956"},{"key":"67_CR14","unstructured":"Murphy, P., Aha, W.: UCI repository of machine learning databases (1996), http:\/\/www.ics.uci.edu\/mlearn\/MLRepository.html"},{"key":"67_CR15","unstructured":"Das, A.K., Sil, J.: An Efficient Classifier Design Integrating Rough Set and Graph Theory based Decision Forest. In: the 4th Indian International Conference on Artificial Intelligence (IICAI 2009), Siddaganga Institute of Technology, December 16-18, pp. 533\u2013544, Tumkur, India (2009)"},{"key":"67_CR16","unstructured":"WEKA: Machine Learning Software, http:\/\/www.cs.waikato.ac.nz\/~ml\/"},{"key":"67_CR17","unstructured":"Borgelt, C.: Apriori: Finding Association Rules\/ Hyperedges with the Apriori Algorithm School of Computer Science, University of Magdeburg (2004)"},{"key":"67_CR18","doi-asserted-by":"crossref","unstructured":"Quinlan, J.R.: The minimum description length and categorical theories. In: Proceedings 11th International Conference on Machine learning, New Brunswick, pp. 233\u2013241. Morgan Kaufmann, San Francisco","DOI":"10.1016\/B978-1-55860-335-6.50036-2"},{"key":"67_CR19","doi-asserted-by":"publisher","first-page":"746","DOI":"10.1198\/016214501753168398","volume":"96","author":"M. Hansen","year":"2001","unstructured":"Hansen, M., Yu, B.: Model selection and the principle of minimum description length. J. Am. Stat. Assoc.\u00a096, 746\u2013774 (2001)","journal-title":"J. Am. Stat. Assoc."},{"key":"67_CR20","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/S0925-2312(00)00337-4","volume":"36","author":"W.S. Roman","year":"2001","unstructured":"Roman, W.S., Hargis, L.: Rough sets as a frontend as neural-networks texture classifiers. Neurocomputing\u00a036, 85\u2013102 (2001)","journal-title":"Neurocomputing"}],"container-title":["Lecture Notes in Computer Science","Swarm, Evolutionary, and Memetic Computing"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-642-17563-3_67","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,6]],"date-time":"2019-06-06T19:51:05Z","timestamp":1559850665000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-642-17563-3_67"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2010]]},"ISBN":["9783642175626","9783642175633"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-642-17563-3_67","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2010]]}}}