{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T14:32:48Z","timestamp":1725892368410},"publisher-location":"Berlin, Heidelberg","reference-count":44,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783642005794"},{"type":"electronic","value":"9783642005800"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2010]]},"DOI":"10.1007\/978-3-642-00580-0_13","type":"book-chapter","created":{"date-parts":[[2010,9,4]],"date-time":"2010-09-04T03:02:57Z","timestamp":1283569377000},"page":"217-234","source":"Crossref","is-referenced-by-count":3,"title":["Mining Common Outliers for Intrusion Detection"],"prefix":"10.1007","author":[{"given":"Goverdhan","family":"Singh","sequence":"first","affiliation":[]},{"given":"Florent","family":"Masseglia","sequence":"additional","affiliation":[]},{"given":"C\u00e9line","family":"Fiot","sequence":"additional","affiliation":[]},{"given":"Alice","family":"Marascu","sequence":"additional","affiliation":[]},{"given":"Pascal","family":"Poncelet","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"issue":"2","key":"13_CR1","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1145\/376284.375668","volume":"30","author":"C.C. Aggarwal","year":"2001","unstructured":"Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. SIGMOD Records\u00a030(2), 37\u201346 (2001)","journal-title":"SIGMOD Records"},{"doi-asserted-by":"crossref","unstructured":"Aleskerov, E., Freisleben, B., Rao, B.: Cardwatch: A neural network based database mining system for credit card fraud detection. In: IEEE Computational Intelligence for Financial Engineering (1997)","key":"13_CR2","DOI":"10.1109\/CIFER.1997.618940"},{"doi-asserted-by":"crossref","unstructured":"Barbara, D., Wu, N., Jajodia, S.: Detecting novel network intrusions using Bayes estimators. In: 1st SIAM Conference on Data Mining (2001)","key":"13_CR3","DOI":"10.1137\/1.9781611972719.28"},{"volume-title":"Outliers in statistical data","year":"1994","unstructured":"Barnett, V., Lewis, T. (eds.): Outliers in statistical data. John Wiley & Sons, Chichester (1994)","key":"13_CR4"},{"doi-asserted-by":"crossref","unstructured":"Billor, N., Hadi, A.S., Velleman, P.F.: BACON: blocked adaptive computationally efficient outlier nominators. Computational Statistics and Data Analysis\u00a034 (2000)","key":"13_CR5","DOI":"10.1016\/S0167-9473(99)00101-2"},{"unstructured":"Bloedorn, E., Christiansen, A.D., Hill, W., Skorupka, C., Talbot, L.M.: Data Mining for Network Intrusion Detection: How to Get Started. Technical report, MITRE (2001)","key":"13_CR6"},{"issue":"2","key":"13_CR7","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1145\/335191.335388","volume":"29","author":"M.M. Breunig","year":"2000","unstructured":"Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. SIGMOD Records\u00a029(2), 93\u2013104 (2000)","journal-title":"SIGMOD Records"},{"doi-asserted-by":"crossref","unstructured":"Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection - A Survey. ACM Computing Surveys (2008)","key":"13_CR8","DOI":"10.1145\/1541880.1541882"},{"unstructured":"Chimphlee, W., Abdullah, A.H., Md Sap, M.N., Chimphlee, S.: Unsupervised Anomaly Detection with Unlabeled Data Using Clustering. In: International conference on information and communication technology (2005)","key":"13_CR9"},{"unstructured":"Dokas, P., Ertoz, L., Kumar, V., Lazarevic, A., Srivastava, J., Tan, P.: Data mining for network intrusion detection. In: NSF Workshop on Next Generation Data Mining (2002)","key":"13_CR10"},{"doi-asserted-by":"crossref","unstructured":"Duan, L., Xiong, D., Lee, J., Guo, F.: A Local Density Based Spatial Clustering Algorithm with Noise. In: IEEE International Conference on Systems, Man and Cybernetics (2006)","key":"13_CR11","DOI":"10.1109\/ICSMC.2006.384769"},{"unstructured":"Ertoz, L., Eilertson, E., Lazarevic, A., Tan, P.-N., Kumar, V., Srivastava, J., Dokas, P.: MINDS - Minnesota Intrusion Detection System. In: Data Mining - Next Generation Challenges and Future Directions (2004)","key":"13_CR12"},{"doi-asserted-by":"crossref","unstructured":"Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. Applications of Data Mining in Computer Security (2002)","key":"13_CR13","DOI":"10.1007\/978-1-4615-0953-0_4"},{"unstructured":"Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density\u2013based algorithm for discovering clusters in large spatial databases with noise. In: 2nd International Conference on Knowledge Discovery and Data Mining (1996)","key":"13_CR14"},{"doi-asserted-by":"crossref","unstructured":"Fan, H., Zaiane, O.R., Foss, A., Wu, J.: A nonparametric outlier detection for effectively discovering top-N outliers from engineering data. In: Pacific-Asia conference on knowledge discovery and data mining (2006)","key":"13_CR15","DOI":"10.1007\/11731139_66"},{"doi-asserted-by":"crossref","unstructured":"Fujimaki, R., Yairi, T., Machida, K.: An approach to spacecraft anomaly detection problem using kernel feature space. In: 11th ACM SIGKDD international conference on Knowledge discovery in data mining (2005)","key":"13_CR16","DOI":"10.1145\/1081870.1081917"},{"doi-asserted-by":"crossref","unstructured":"He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recognition Letters\u00a024 (2003)","key":"13_CR17","DOI":"10.1016\/S0167-8655(03)00003-5"},{"doi-asserted-by":"crossref","unstructured":"Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence Review\u00a022 (2004)","key":"13_CR18","DOI":"10.1023\/B:AIRE.0000045502.10941.a9"},{"doi-asserted-by":"crossref","unstructured":"Jin, W., Tung, A.K.H., Han, J.: Mining top-n local outliers in large databases. In: 7th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 293\u2013298 (2001)","key":"13_CR19","DOI":"10.1145\/502512.502554"},{"key":"13_CR20","series-title":"Lecture Notes in Artificial Intelligence","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1007\/978-3-540-24775-3_33","volume-title":"Advances in Knowledge Discovery and Data Mining","author":"J. Joshua Oldmeadow","year":"2004","unstructured":"Joshua Oldmeadow, J., Ravinutala, S., Leckie, C.: Adaptive Clustering for Network Intrusion Detection. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol.\u00a03056, pp. 255\u2013259. Springer, Heidelberg (2004)"},{"unstructured":"Knorr, E.M., Ng, R.T.: Algorithms for Mining Distance-Based Outliers in Large Datasets. In: 24th International Conference on Very Large Data Bases, pp. 392\u2013403 (1998)","key":"13_CR21"},{"doi-asserted-by":"crossref","unstructured":"Kwitt, R., Hofmann, U.: Unsupervised Anomaly Detection in Network Traffic by Means of Robust PCA. In: International Multi-Conference on Computing in the Global Information Technology (2007)","key":"13_CR22","DOI":"10.1109\/ICCGI.2007.62"},{"doi-asserted-by":"crossref","unstructured":"Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study of anomaly detection schemes in network intrusion detection. In: 3rd SIAM International Conference on Data Mining (2003)","key":"13_CR23","DOI":"10.1137\/1.9781611972733.3"},{"unstructured":"Lee, W., Stolfo, S.J.: Data mining approaches for intrusion detection. In: 7th conference on USENIX Security Symposium (1998)","key":"13_CR24"},{"unstructured":"Lee, W., Xiang, D.: Information-Theoretic Measures for Anomaly Detection. In: IEEE Symposium on Security and Privacy (2001)","key":"13_CR25"},{"unstructured":"Locasto, M., Parekh, J., Stolfo, S., Keromytis, A., Malkin, T., Misra, V.: Collaborative Distributed Intrusion Detection. Technical Report CUCS-012-04, Columbia Unviersity Technical Report (2004)","key":"13_CR26"},{"doi-asserted-by":"crossref","unstructured":"Marascu, A., Masseglia, F.: Parameterless outlier detection in data streams. In: SAC, pp. 1491\u20131495 (2009)","key":"13_CR27","DOI":"10.1145\/1529282.1529615"},{"unstructured":"Marchette, D.: A statistical method for profiling network traffic. In: 1st USENIX Workshop on Intrusion Detection and Network Monitoring, pp. 119\u2013128 (1999)","key":"13_CR28"},{"doi-asserted-by":"crossref","unstructured":"Markou, M., Singh, S.: Novelty detection: a review - part 1: statistical approaches. Signal Processing\u00a083 (2003)","key":"13_CR29","DOI":"10.1016\/j.sigpro.2003.07.018"},{"doi-asserted-by":"crossref","unstructured":"Otey, M., Parthasarathy, S., Ghoting, A., Li, G., Narravula, S., Panda, D.: Towards nic\u2013based intrusion detection. In: 9th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 723\u2013728 (2003)","key":"13_CR30","DOI":"10.1145\/956750.956847"},{"doi-asserted-by":"crossref","unstructured":"Papadimitriou, S., Kitagawa, H., Gibbons, P., Faloutsos, C.: LOCI: fast outlier detection using the local correlation integral. In: 19th International Conference on Data Engineering (2003)","key":"13_CR31","DOI":"10.1109\/ICDE.2003.1260802"},{"doi-asserted-by":"crossref","unstructured":"Patcha, A., Park, J.-M.: An overview of anomaly detection techniques: Existing solutions and latest technological trends. Comput. Networks\u00a051 (2007)","key":"13_CR32","DOI":"10.1016\/j.comnet.2007.02.001"},{"unstructured":"Pires, A., Santos-Pereira, C.: Using clustering and robust estimators to detect outliers in multivariate data. In: International Conference on Robust Statistics (2005)","key":"13_CR33"},{"unstructured":"Portnoy, L., Eskin, E., Stolfo, S.: Intrusion detection with unlabeled data using clustering. In: ACM CSS Workshop on Data Mining Applied to Security (2001)","key":"13_CR34"},{"issue":"2","key":"13_CR35","doi-asserted-by":"publisher","first-page":"427","DOI":"10.1145\/335191.335437","volume":"29","author":"S. Ramaswamy","year":"2000","unstructured":"Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. SIGMOD Records\u00a029(2), 427\u2013438 (2000)","journal-title":"SIGMOD Records"},{"unstructured":"Roesch, M.: SNORT (1998), http:\/\/www.snort.org","key":"13_CR36"},{"unstructured":"Rousseeuw, P., Leroy, A.M. (eds.): Robust Regression and Outlier Detection. Wiley-IEEE (1996)","key":"13_CR37"},{"doi-asserted-by":"crossref","unstructured":"Spence, C., Parra, L., Sajda, P.: Detection, synthesis and compression in mammographic image analysis with a hierarchical image probability model. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (2001)","key":"13_CR38","DOI":"10.1109\/MMBIA.2001.991693"},{"key":"13_CR39","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"54","DOI":"10.1007\/3-540-45474-8_4","volume-title":"Recent Advances in Intrusion Detection","author":"A. Valdes","year":"2001","unstructured":"Valdes, A., Skinner, K.: Probabilistic Alert Correlation. In: Lee, W., M\u00e9, L., Wespi, A. (eds.) RAID 2001. LNCS, vol.\u00a02212, pp. 54\u201368. Springer, Heidelberg (2001)"},{"key":"13_CR40","series-title":"SCI","first-page":"237","volume-title":"Advances in Knowledge Discovery and Management","author":"N. Verma","year":"2010","unstructured":"Verma, N., Trousset, F., Poncelet, P., Masseglia, F.: Intrusion Detections in Collaborative Organizations by Preserving Privacy. In: Guillet, F., Ritschard, G., Briand, H., Zighed, D.A. (eds.) Advances in Knowledge Discovery and Management. SCI, vol.\u00a0292, pp. 237\u2013250. Springer, Heidellberg (2010)"},{"unstructured":"Vinueza, A., Grudic, G.: Unsupervised outlier detection and semi\u2013supervised learning. Technical Report CU-CS-976-04, Univ. of Colorado, Boulder (2004)","key":"13_CR41"},{"doi-asserted-by":"crossref","unstructured":"Wu, N., Zhang, J.: Factor analysis based anomaly detection. In: IEEE Workshop on Information Assurance (2003)","key":"13_CR42","DOI":"10.1109\/SMCSIA.2003.1232408"},{"unstructured":"Yegneswaran, V., Barford, P., Jha, S.: Global Intrusion Detection in the DOMINO Overlay System. In: Network and Distributed Security Symposium (2004)","key":"13_CR43"},{"doi-asserted-by":"crossref","unstructured":"Zhong, S., Khoshgoftaar, T.M., Seliya, N.: Clustering-based Network Intrusion Detection. International Journal of Reliability, Quality and Safety Engineering\u00a014 (2007)","key":"13_CR44","DOI":"10.1142\/S0218539307002568"}],"container-title":["Studies in Computational Intelligence","Advances in Knowledge Discovery and Management"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-642-00580-0_13.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,11,24]],"date-time":"2020-11-24T02:35:46Z","timestamp":1606185346000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-642-00580-0_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2010]]},"ISBN":["9783642005794","9783642005800"],"references-count":44,"URL":"https:\/\/doi.org\/10.1007\/978-3-642-00580-0_13","relation":{},"ISSN":["1860-949X","1860-9503"],"issn-type":[{"type":"print","value":"1860-949X"},{"type":"electronic","value":"1860-9503"}],"subject":[],"published":{"date-parts":[[2010]]}}}