{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T06:44:05Z","timestamp":1725518645957},"publisher-location":"Berlin, Heidelberg","reference-count":13,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783540877318"},{"type":"electronic","value":"9783540877325"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"DOI":"10.1007\/978-3-540-87732-5_74","type":"book-chapter","created":{"date-parts":[[2008,9,4]],"date-time":"2008-09-04T07:16:14Z","timestamp":1220512574000},"page":"663-673","source":"Crossref","is-referenced-by-count":1,"title":["Global Convergence Analysis of Decomposition Methods for Support Vector Regression"],"prefix":"10.1007","author":[{"given":"Jun","family":"Guo","sequence":"first","affiliation":[]},{"given":"Norikazu","family":"Takahashi","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"volume-title":"Statistical Learning Theory","year":"1998","author":"V.N. Vapnik","key":"74_CR1","unstructured":"Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)"},{"volume-title":"Advances in Kernel Methods: Support Vector Machines","year":"1998","author":"J.C. Platt","key":"74_CR2","unstructured":"Platt, J.C.: Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In: Sch\u00f6lkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Machines, MIT Press, Cambridge (1998)"},{"volume-title":"Advances in Kernel Methods: Support Vector Machines","year":"1998","author":"T. Joachims","key":"74_CR3","unstructured":"Joachims, T.: Making Large-scale SVM Learning Practical. In: Sch\u00f6lkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Machines, MIT Press, Cambridge (1998)"},{"key":"74_CR4","doi-asserted-by":"publisher","first-page":"637","DOI":"10.1162\/089976601300014493","volume":"13","author":"S.S. Keerthi","year":"2001","unstructured":"Keerthi, S.S., Shevade, S.K., Bhattacharyya, C.S.S., Murthy, K.R.K.: Improvements to Platt\u2019s SMO Algorithm for SVM Classifier Design. Neural Computing\u00a013, 637\u2013649 (2001)","journal-title":"Neural Computing"},{"key":"74_CR5","doi-asserted-by":"publisher","first-page":"291","DOI":"10.1023\/A:1012427100071","volume":"46","author":"C.W. Hsu","year":"2002","unstructured":"Hsu, C.W., Lin, C.J.: A Simple Decomposition Method for Support Vector Machines. Machine Learning\u00a046, 291\u2013314 (2002)","journal-title":"Machine Learning"},{"key":"74_CR6","doi-asserted-by":"publisher","first-page":"1362","DOI":"10.1109\/TNN.2006.880584","volume":"17","author":"N. Takahashi","year":"2006","unstructured":"Takahashi, N., Nishi, T.: Global Convergence of Decomposition Learning Methods for Support Vector Machines. IEEE Trans. on Neural Networks\u00a017, 1362\u20131368 (2006)","journal-title":"IEEE Trans. on Neural Networks"},{"key":"74_CR7","doi-asserted-by":"publisher","first-page":"1183","DOI":"10.1109\/72.870050","volume":"11","author":"S.K. Shevade","year":"2000","unstructured":"Shevade, S.K., Keerthi, S.S., Bhattacharyya, C.S.S., Murthy, K.R.K.: Improvements to the SMO Algorithm for SVM Regression. IEEE Trans. on Neural Networks\u00a011, 1183\u20131188 (2000)","journal-title":"IEEE Trans. on Neural Networks"},{"key":"74_CR8","unstructured":"Laskov, P.: An Improved Decomposition Algorithm for Regression Support Vector Machines. In: Workshop on Support Vector Machines, NIPS 1999 (1999)"},{"key":"74_CR9","doi-asserted-by":"publisher","first-page":"1267","DOI":"10.1162\/089976602753712936","volume":"14","author":"S.P. Lia","year":"2002","unstructured":"Lia, S.P., Lin, H.T., Lin, C.J.: A Note on the Decomposition Methods for Support Vector Regression. Neural Computing\u00a014, 1267\u20131281 (2002)","journal-title":"Neural Computing"},{"key":"74_CR10","doi-asserted-by":"publisher","first-page":"271","DOI":"10.1023\/A:1012474916001","volume":"46","author":"G.W. Flake","year":"2002","unstructured":"Flake, G.W., Lawrence, S.: Efficient SVM Regression Training with SMO. Machine Learning\u00a046, 271\u2013290 (2002)","journal-title":"Machine Learning"},{"volume-title":"Nonlinear Programming: A Unified Approach","year":"1967","author":"W.I. Zangwill","key":"74_CR11","unstructured":"Zangwill, W.I.: Nonlinear Programming: A Unified Approach. Prentice-Hall, Englewood Cliffs (1967)"},{"volume-title":"Linear and Nonlinear Programming","year":"1989","author":"D.G. Luenberger","key":"74_CR12","unstructured":"Luenberger, D.G.: Linear and Nonlinear Programming. Addison-Wesley, Reading (1989)"},{"key":"74_CR13","doi-asserted-by":"crossref","unstructured":"Guo, J., Takahashi, N., Nishi, T.: Convergence Proof of a Sequential Minimal Optimization Algorithm for Support Vector Regression. In: Proc. of IJCNN 2006, pp. 747\u2013754 (2006)","DOI":"10.1007\/11893028_92"}],"container-title":["Lecture Notes in Computer Science","Advances in Neural Networks - ISNN 2008"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-540-87732-5_74.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,16]],"date-time":"2021-09-16T00:30:03Z","timestamp":1631752203000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-540-87732-5_74"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[null]]},"ISBN":["9783540877318","9783540877325"],"references-count":13,"URL":"https:\/\/doi.org\/10.1007\/978-3-540-87732-5_74","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[]}}