{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T04:54:13Z","timestamp":1725512053904},"publisher-location":"Berlin, Heidelberg","reference-count":16,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783540717003"},{"type":"electronic","value":"9783540717010"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"DOI":"10.1007\/978-3-540-71701-0_123","type":"book-chapter","created":{"date-parts":[[2007,6,20]],"date-time":"2007-06-20T15:31:38Z","timestamp":1182353498000},"page":"1088-1095","source":"Crossref","is-referenced-by-count":5,"title":["An Effective Gene Selection Method Based on Relevance Analysis and Discernibility Matrix"],"prefix":"10.1007","author":[{"given":"Li-Juan","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Zhou-Jun","family":"Li","sequence":"additional","affiliation":[]},{"given":"Huo-Wang","family":"Chen","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"issue":"5439","key":"123_CR1","doi-asserted-by":"publisher","first-page":"531","DOI":"10.1126\/science.286.5439.531","volume":"286","author":"T.R. Golub","year":"1999","unstructured":"Golub, T.R., et al.: Molecular classifications of cancer: Class discovery and class prediction by gene expression monitoring. Science\u00a0286(5439), 531\u2013537 (1999)","journal-title":"Science"},{"key":"123_CR2","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1002\/cfg.62","volume":"2","author":"E.R. Dougherty","year":"2001","unstructured":"Dougherty, E.R.: Small sample issue for microarray-based classification. Comparative and Functional Genomics\u00a02, 28\u201334 (2001)","journal-title":"Comparative and Functional Genomics"},{"key":"123_CR3","unstructured":"Xing, E., Jordan, M., Karp, R.: Feature selection for high-dimensional genomic microarray data. In: Proceedings of the 18th International Conference on Machine Learning, pp. 601\u2013608 (2001)"},{"issue":"1-2","key":"123_CR4","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1016\/S0004-3702(97)00043-X","volume":"97","author":"R. Kohavi","year":"1997","unstructured":"Kohavi, R., John, G.: Wrappers for feature subset selection. Artiticial Intelligence\u00a097(1-2), 273\u2013324 (1997)","journal-title":"Artiticial Intelligence"},{"key":"123_CR5","series-title":"Lecture Notes in Artificial Intelligence","doi-asserted-by":"publisher","first-page":"378","DOI":"10.1007\/11893318_46","volume-title":"Discovery Science","author":"L.-J. Zhang","year":"2006","unstructured":"Zhang, L.-J., Li, Z.-J.: Gene Selection for classifying microarray data using grey relational analysis. In: Todorovski, L., Lavra\u010d, N., Jantke, K.P. (eds.) DS 2006. LNCS (LNAI), vol.\u00a04265, pp. 378\u2013382. Springer, Heidelberg (2006)"},{"key":"123_CR6","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1023\/A:1025667309714","volume":"53","author":"M. Robnik-Sikonja","year":"2003","unstructured":"Robnik-Sikonja, M., Kononenko, I.: Theoretical and empirical analysis of Relief and ReliefF. Machine Learning\u00a053, 23\u201369 (2003)","journal-title":"Machine Learning"},{"key":"123_CR7","first-page":"120","volume-title":"Workshops Proceedings of ICDM\u20192006","author":"L.-J. Zhang","year":"2006","unstructured":"Zhang, L.-J., et al.: Minimum Redundancy Gene Selection based on Grey Relational analysis. In: Workshops Proceedings of ICDM\u20192006, pp. 120\u2013124. IEEE Computer Society Press, Los Alamitos (2006)"},{"key":"123_CR8","unstructured":"Jaeger, J., Sengupta, R., Ruzzo, W.L.: Improved gene selection for classification of microarrays. In: Proc. PSB (2003)"},{"key":"123_CR9","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1186\/1471-2105-6-76","volume":"6","author":"X. Liu","year":"2005","unstructured":"Liu, X., Krishnan, A., Mondry, A.: an entropy-based gene selection method for cancer classification using microarray data. BMC Bioinformatics\u00a06, 76 (2005)","journal-title":"BMC Bioinformatics"},{"key":"123_CR10","unstructured":"Hall, M.: Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the 17th International Conference on Machine Learning, pp. 359\u2013366 (2000)"},{"key":"123_CR11","first-page":"1205","volume":"5","author":"L. Yu","year":"2004","unstructured":"Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learning Res.\u00a05, 1205\u20131224 (2004)","journal-title":"J. Mach. Learning Res."},{"key":"123_CR12","unstructured":"Koller, D., Sahami, M.: Toward optimal feature selection. In: Proceedings of the 13th International Conference on Machine Learning, pp. 284\u2013292 (1996)"},{"key":"123_CR13","unstructured":"Kohavi, R., Sommerfield, D.: Feature subset selection using the wrapper method: Overfitting and dynamic search space topology. In: Fayyad, U.M., Uthurusamy, R. (eds.) Proceedings of KDD\u201995, pp. 192\u2013197 (1995)"},{"key":"123_CR14","first-page":"14","volume-title":"Relevance: Proc. 1994 AAAI Fall Symposium","author":"A. Blum","year":"1994","unstructured":"Blum, A.: Relevant examples & relevant features: thoughts from computational learning theory. In: Relevance: Proc. 1994 AAAI Fall Symposium, pp. 14\u201318. AAAI Press, Menlo Park (1994)"},{"key":"123_CR15","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1007\/978-94-015-7975-9_21","volume-title":"Intelligent Decision Support-Handbook of Applications and Advances of the Rough Sets Theory","author":"A. Skowron","year":"1992","unstructured":"Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support-Handbook of Applications and Advances of the Rough Sets Theory, pp. 331\u2013362. Kluwer Academic Publishers, Dordrecht (1992)"},{"key":"123_CR16","volume-title":"Data Mining - Pracitcal Machine Learning Tools and Techniques with JAVAImplementations","author":"I. Witten","year":"2000","unstructured":"Witten, I., Frank, E.: Data Mining - Pracitcal Machine Learning Tools and Techniques with JAVAImplementations. Morgan Kaufmann, San Francisco (2000)"}],"container-title":["Lecture Notes in Computer Science","Advances in Knowledge Discovery and Data Mining"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-540-71701-0_123.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,11,19]],"date-time":"2020-11-19T05:25:10Z","timestamp":1605763510000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-540-71701-0_123"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[null]]},"ISBN":["9783540717003","9783540717010"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-3-540-71701-0_123","relation":{},"subject":[]}}