{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T07:17:12Z","timestamp":1725520632374},"publisher-location":"Berlin, Heidelberg","reference-count":34,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783540354871"},{"type":"electronic","value":"9783540354888"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"DOI":"10.1007\/978-3-540-35488-8_3","type":"book-chapter","created":{"date-parts":[[2008,11,15]],"date-time":"2008-11-15T10:46:31Z","timestamp":1226745991000},"page":"65-88","source":"Crossref","is-referenced-by-count":3,"title":["Assessment Methods"],"prefix":"10.1007","author":[{"given":"G\u00e9rard","family":"Dreyfus","sequence":"first","affiliation":[]},{"given":"Isabelle","family":"Guyon","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"key":"3_CR1","doi-asserted-by":"publisher","first-page":"125","DOI":"10.2307\/1267500","volume":"16","author":"D.M. Allen","year":"1974","unstructured":"D.M. Allen. The relationship between variable selection and prediction. Technometrics, 16:125\u2013127, 1974.","journal-title":"Technometrics"},{"key":"3_CR2","doi-asserted-by":"publisher","first-page":"6562","DOI":"10.1073\/pnas.102102699","volume":"99","author":"C. Ambroise","year":"2002","unstructured":"C. Ambroise and G. J. McLachlan. Selection bias in gene extraction on the basis of microarray gene-expression data. PNAS, (99):6562\u20136566, 2002.","journal-title":"PNAS"},{"key":"3_CR3","doi-asserted-by":"publisher","first-page":"309","DOI":"10.1016\/S0893-6080(98)00117-8","volume":"12","author":"U. Anders","year":"1999","unstructured":"U. Anders and O. Korn. Model selection in neural networks. Neural Networks, 12: 309\u2013323, 1999.","journal-title":"Neural Networks"},{"key":"3_CR4","first-page":"1089","volume":"5","author":"J. Bengio","year":"2003","unstructured":"J. Bengio and Y. Grandvalet. No unbiased estimator of the variance of K-fold cross-validation. Journal of Machine Learning Research, 5:1089\u20131105, 2003.","journal-title":"Journal of Machine Learning Research"},{"key":"3_CR5","first-page":"289","volume":"85","author":"Y. Benjamini","year":"1995","unstructured":"Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B, 85:289\u2013300, 1995.","journal-title":"J. Roy. Stat. Soc. B"},{"key":"3_CR6","doi-asserted-by":"publisher","first-page":"1229","DOI":"10.1162\/153244303322753643","volume":"3","author":"J. Bi","year":"2003","unstructured":"J. Bi, K.P. Bennett, M. Embrechts, C.M. Breneman, and M. Song. Dimensionality reduction via sparse support vector machines. Journal of Machine Learning Research, 3:1229\u20131243, 2003.","journal-title":"Journal of Machine Learning Research"},{"key":"3_CR7","first-page":"1","volume":"7","author":"A. Bj\u00f6rck","year":"1967","unstructured":"A. Bj\u00f6rck. Solving linear least squares problems by gram-schmidt orthogonalization. Nordisk Tidshrift for Informationsbehadlung, 7:1\u201321, 1967.","journal-title":"Nordisk Tidshrift for Informationsbehadlung"},{"key":"3_CR8","first-page":"123","volume":"24","author":"L. Breiman","year":"1996","unstructured":"L. Breiman. Bagging predictors. Machine Learning, 24:123\u2013140, 1996.","journal-title":"Machine Learning"},{"key":"3_CR9","doi-asserted-by":"publisher","first-page":"1873","DOI":"10.1080\/00207178908953472","volume":"50","author":"S. Chen","year":"1989","unstructured":"S. Chen, S.A. Billings, and W. Luo. Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control, 50:1873\u20131896, 1989.","journal-title":"International Journal of Control"},{"key":"3_CR10","unstructured":"C. Cortes and M. Mohri. Confidence intervals for area under ROC curve. In Neural information Processing Systems 2004, 2004."},{"key":"3_CR11","doi-asserted-by":"crossref","unstructured":"D. R. Cox and D. V. Hinkley. Theoretical Statistics. Chapman and Hall\/CRC, 1974.","DOI":"10.1007\/978-1-4899-2887-0"},{"key":"3_CR12","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4899-4541-9","volume-title":"Introduction to the bootstrap","author":"B. Efron","year":"1993","unstructured":"B. Efron and R.J. Tibshirani. Introduction to the bootstrap. Chapman and Hall, New York, 1993."},{"key":"3_CR13","doi-asserted-by":"publisher","first-page":"499","DOI":"10.1111\/1467-9868.00347","volume":"64","author":"C.R. Genovese","year":"2002","unstructured":"C.R. Genovese and L. Wasserman. Operating characteristics and extensions of the false discovery rate procedure. J. Roy. Stat. Soc. B, 64:499\u2013518, 2002.","journal-title":"J. Roy. Stat. Soc. B"},{"key":"3_CR14","unstructured":"G.C. Goodwin and R.L. Payne. Dynamic system identification: experiment design and data analysis. Academic Press, 1977."},{"key":"3_CR15","doi-asserted-by":"publisher","first-page":"52","DOI":"10.1109\/34.655649","volume":"20","author":"I. Guyon","year":"1998","unstructured":"I. Guyon, J. Makhoul, R. Schwartz, and V. Vapnik. What size test set gives good error rate estimates? IEEE Transactions on Pattern Analysis and Machine Intelligence, 20:52\u201364, 1998.","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"3_CR16","doi-asserted-by":"crossref","unstructured":"K. Jong, E. Marchiori, and M. Sebag. Ensemble learning with evolutionary computation: Application to feature ranking. In 8th International Conference on Parallel Problem Solving from Nature, pages 1133\u20131142. Springer, 2004.","DOI":"10.1007\/978-3-540-30217-9_114"},{"key":"3_CR17","doi-asserted-by":"crossref","unstructured":"P. Langley. Selection of relevant features in machine learning, 1994.","DOI":"10.21236\/ADA292575"},{"key":"3_CR18","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1080\/00207178708933730","volume":"45","author":"I.J. Leontaritis","year":"1987","unstructured":"I.J. Leontaritis and S.A. Billings. Model selection and validation methods for nonlinear systems. International Journal of Control, 45:311\u2013341, 1987.","journal-title":"International Journal of Control"},{"key":"3_CR19","doi-asserted-by":"publisher","first-page":"1481","DOI":"10.1162\/089976602753713025","volume":"14","author":"G. Monari","year":"2002","unstructured":"G. Monari and G. Dreyfus. Local overfitting control via leverages. Neural Computation, 14:1481\u20131506, 2002.","journal-title":"Neural Computation"},{"key":"3_CR20","first-page":"404","volume-title":"15th International Conference on Machine Learning","author":"A. Y. Ng","year":"1998","unstructured":"A. Y. Ng. On feature selection: learning with exponentially many irrelevant features as training examples. In 15th International Conference on Machine Learning, pages 404\u2013412. Morgan Kaufmann, San Francisco, CA, 1998."},{"key":"3_CR21","doi-asserted-by":"crossref","unstructured":"M. Opper and O. Winther. Advances in large margin classifiers, chapter Gaussian processes and Support Vector Machines: mean field and leave-one-out, pages 311\u2013326. MIT Press, 2000.","DOI":"10.7551\/mitpress\/1113.003.0023"},{"key":"3_CR22","unstructured":"L. Oukhellou, P. Aknin, H. Stoppiglia, and G. Dreyfus. A new decision criterion for feature selection: Application to the classification of non destructive testing signatures. In European SIgnal Processing COnference (EUSIPCO\u201998), Rhodes, 1998."},{"key":"3_CR23","doi-asserted-by":"publisher","first-page":"419","DOI":"10.1162\/089976604322742092","volume":"16","author":"Y. Oussar","year":"2004","unstructured":"Y. Oussar, G. Monari, and G. Dreyfus. Reply to the comments on \u201dlocal overfitting control via leverages\u201d in \u201djacobian conditioning analysis for model validation\u201d. Neural Computation, 16:419\u2013443, 2004.","journal-title":"Neural Computation"},{"key":"3_CR24","unstructured":"I. Rivals and L. Personnaz. MLPs (mono-layer polynomials and multi-layer perceptrons) for non-linear modeling. JMLR, 2003."},{"key":"3_CR25","volume-title":"Linear regression analysis","author":"G.A. Seber","year":"1977","unstructured":"G.A. Seber. Linear regression analysis. Wiley, New York, 1977."},{"key":"3_CR26","doi-asserted-by":"crossref","DOI":"10.1002\/0471725315","volume-title":"Nonlinear regression","author":"G.A. Seber","year":"1989","unstructured":"G.A. Seber and C.J. Wild. Nonlinear regression. John Wiley and Sons, New York, 1989."},{"key":"3_CR27","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1080\/00207177708922285","volume":"26","author":"T. S\u00f6derstr\u00f6m","year":"1977","unstructured":"T. S\u00f6derstr\u00f6m. On model structure testing in system identification. International Journal of Control, 26:1\u201318, 1977.","journal-title":"International Journal of Control"},{"key":"3_CR28","first-page":"111","volume":"36","author":"M. Stone","year":"1974","unstructured":"M. Stone. Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc. B, 36:111\u2013147, 1974.","journal-title":"J. Roy. Stat. Soc. B"},{"key":"3_CR29","volume-title":"M\u00e9thodes Statistiques de S\u00e9lection de Mod\u00e8les Neuronaux; Applications Financi\u00e8res et Bancaires","author":"H. Stoppiglia","year":"1997","unstructured":"H. Stoppiglia. M\u00e9thodes Statistiques de S\u00e9lection de Mod\u00e8les Neuronaux; Applications Financi\u00e8res et Bancaires. PhD thesis, l\u2019Universit\u00e9 Pierre et Marie Curie, Paris, 1997. (available electronically at http:\/\/www.neurones.espci.fr )."},{"key":"3_CR30","unstructured":"H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar. Ranking a random feature for variable and feature selection. Journal of Machine Learning Research, pages 1399\u20131414, 2003."},{"key":"3_CR31","doi-asserted-by":"publisher","first-page":"9440","DOI":"10.1073\/pnas.1530509100","volume":"100","author":"J.D. Storey","year":"2003","unstructured":"J.D. Storey and R. Tibshirani. Statistical significance for genomewide studies. Proc. Nat. Acad. Sci., 100:9440\u20139445, 2003.","journal-title":"Proc. Nat. Acad. Sci."},{"key":"3_CR32","volume-title":"Statistical Learning Theory","author":"V. Vapnik","year":"1998","unstructured":"V. Vapnik. Statistical Learning Theory. John Wiley & Sons, N.Y., 1998."},{"key":"3_CR33","volume-title":"Estimation of dependencies based on empirical data","author":"V.N. Vapnik","year":"1982","unstructured":"V.N. Vapnik. Estimation of dependencies based on empirical data. Springer, New-York, 1982."},{"issue":"1","key":"3_CR34","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1023\/A:1007519102914","volume":"35","author":"D. Wolpert","year":"1999","unstructured":"D. Wolpert and W.G. Macready. An efficient method to estimate bagging\u2019s generalization error. Machine Learning, 35(1):41\u201355, 1999.","journal-title":"Machine Learning"}],"container-title":["Studies in Fuzziness and Soft Computing","Feature Extraction"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-540-35488-8_3.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,2]],"date-time":"2024-03-02T14:01:26Z","timestamp":1709388086000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-540-35488-8_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[null]]},"ISBN":["9783540354871","9783540354888"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-540-35488-8_3","relation":{},"ISSN":["1434-9922"],"issn-type":[{"type":"print","value":"1434-9922"}],"subject":[]}}