{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T19:01:46Z","timestamp":1725476506096},"publisher-location":"Berlin, Heidelberg","reference-count":38,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783540349532"},{"type":"electronic","value":"9783540349549"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2006]]},"DOI":"10.1007\/978-3-540-34954-9_13","type":"book-chapter","created":{"date-parts":[[2007,1,11]],"date-time":"2007-01-11T20:39:17Z","timestamp":1168547957000},"page":"291-314","source":"Crossref","is-referenced-by-count":0,"title":["Feature Subset Selection with Hybrids of Filters and Evolutionary Algorithms"],"prefix":"10.1007","author":[{"given":"Erick","family":"Cant\u00fa-Paz","sequence":"first","affiliation":[]}],"member":"297","reference":[{"key":"13_CR1_13","first-page":"121","volume-title":"Proceedings of the 11th International Conference on Machine Learning","author":"G John","year":"1994","unstructured":"G. John, R. Kohavi, and K. Phleger, \u201cIrrelevant features and the feature subset problem,\u201d in Proceedings of the 11th International Conference on Machine Learning, pp. 121-129, Morgan Kaufmann, San Francisco, CA 1994"},{"issue":"1-2","key":"13_CR2_13","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1016\/S0004-3702(97)00043-X","volume":"97","author":"R Kohavi","year":"1997","unstructured":"R. Kohavi and G. John, \u201cWrappers for feature subset selection,\u201d Artificial Intelligence, vol. 97, no. 1-2, pp. 273-324, 1997","journal-title":"Artificial Intelligence"},{"volume-title":"Genetic and Evolutionary Computation Conference -GECCO-2004","year":"2004","author":"E Cant\u00fa-Paz","key":"13_CR3_13","unstructured":"E. Cant\u00fa-Paz, \u201cFeature subset selection, class separability, and genetic algorithms,\u201d in Genetic and Evolutionary Computation Conference -GECCO-2004, K. Deb et al., (Eds.), Springer, Berlin Heidelberg New York, 2004"},{"key":"13_CR4_13","doi-asserted-by":"publisher","first-page":"1157","DOI":"10.1162\/153244303322753616","volume":"3","author":"I Guyon","year":"2003","unstructured":"I. Guyon and A. Elisseeff, \u201cAn introduction to variable and feature selection,\u201d Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003","journal-title":"Journal of Machine Learning Research"},{"issue":"2","key":"13_CR5_13","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1109\/34.574797","volume":"19","author":"A Jain","year":"1997","unstructured":"A. Jain and D. Zongker, \u201cFeature selection: Evaluation, application and small sample performance,\u201d IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 2, pp. 153-158, 1997","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"1-2","key":"13_CR6_13","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1016\/S0004-3702(97)00063-5","volume":"97","author":"A Blum","year":"1997","unstructured":"A. Blum and P. Langley, \u201cSelection of relevant features and examples in machine learning,\u201d Artificial Intelligence, vol. 97, no. 1-2, pp. 245-271, 1997","journal-title":"Artificial Intelligence"},{"key":"13_CR7_13","doi-asserted-by":"publisher","first-page":"335","DOI":"10.1016\/0167-8655(89)90037-8","volume":"10","author":"W Siedlecki","year":"1989","unstructured":"W. Siedlecki and J. Sklansky, \u201cA note on genetic algorithms for largescale feature selection,\u201d Pattern Recognition Letters, vol. 10, pp. 335-347, 1989","journal-title":"Pattern Recognition Letters"},{"key":"13_CR8_13","unstructured":"F. Z. Brill, D. E. Brown, and W. N. Martin, \u201cGenetic algorithms for feature selection for counterpropagation networks,\u201d Tech. Rep. No. IPC-TR-90-004, University of Virginia, Institute of Parallel Computation, Charlottesville, 1990"},{"key":"13_CR9_13","doi-asserted-by":"crossref","first-page":"83","DOI":"10.7551\/mitpress\/2887.003.0013","volume-title":"Evolutionary Programming IV","author":"TW Brotherton","year":"1995","unstructured":"T. W. Brotherton and P. K. Simpson, \u201cDynamic feature set training of neural nets for classification,\u201d in Evolutionary Programming IV, J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, (Eds.), pp. 83-94, MIT Cambridge, MA, 1995"},{"issue":"3","key":"13_CR10_13","doi-asserted-by":"publisher","first-page":"297","DOI":"10.1162\/evco.1996.4.3.297","volume":"4","author":"J Bala","year":"1996","unstructured":"J. Bala, K. De Jong, J. Huang, H. Vafaie, and H. Wechsler, \u201cUsing learning to facilitate the evolution of features for recognizing visual concepts,\u201d Evolutionary Computation, vol. 4, no. 3, pp. 297-311, 1996","journal-title":"Evolutionary Computation"},{"key":"13_CR11_13","first-page":"377","volume-title":"Proceedings of the Fourth International Conference on Genetic Algorithms","author":"JD Kelly","year":"1991","unstructured":"J. D. Kelly and L. Davis, \u201cHybridizing the genetic algorithm and the K nearest neighbors classification algorithm,\u201d in Proceedings of the Fourth International Conference on Genetic Algorithms, R. K. Belew and L. B. Booker, (Eds.), pp. 377-383, Morgan Kaufmann, San Mateo, CA, 1991"},{"key":"13_CR12_13","first-page":"557","volume-title":"Proceedings of the Fifth International Conference on Genetic Algorithms","author":"WF Punch","year":"1993","unstructured":"W. F. Punch, E. D. Goodman, M. Pei, L. Chia-Shun, P. Hovland, and R. Enbody, \u201cFurther research on feature selection and classification using genetic algorithms,\u201d in Proceedings of the Fifth International Conference on Genetic Algorithms, S. Forrest, (Ed.), pp. 557-564, Morgan Kaufmann, San Mateo, CA, 1993"},{"key":"13_CR13_13","first-page":"561","volume-title":"Proceedings of the Seventh International Conference on Genetic Algorithms","author":"ML Raymer","year":"1997","unstructured":"M. L. Raymer, W. F. Punch, E. D. Goodman, P. C. Sanschagrin, and L. A. Kuhn, \u201cSimultaneous feature scaling and selection using a genetic algorithm,\u201d in Proceedings of the Seventh International Conference on Genetic Algorithms, T. B\u00e4ck, (Ed.), pp. 561-567, Morgan Kaufmann, San Francisco, CA, 1997"},{"issue":"1","key":"13_CR14_13","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1016\/S0031-3203(99)00041-2","volume":"33","author":"M Kudo","year":"2000","unstructured":"M. Kudo and K. Sklansky, \u201cComparison of algorithms that select features for pattern classifiers,\u201d Pattern Recognition, vol. 33, no. 1, pp. 25-41, 2000","journal-title":"Pattern Recognition"},{"key":"13_CR15_13","first-page":"356","volume-title":"Proceedings of the International Conference on Tools with Artificial Intelligence","author":"H Vafaie","year":"1993","unstructured":"H. Vafaie and K. A. De Jong, \u201cRobust feature selection algorithms,\u201d in Proceedings of the International Conference on Tools with Artificial Intelligence. pp. 356-364, IEEE Computer Society, USA 1993"},{"issue":"1-2","key":"13_CR16_13","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1016\/S0004-3702(00)00052-7","volume":"123","author":"I Inza","year":"1999","unstructured":"I. Inza, P. Larra\u00f1aga, R. Etxeberria, and B. Sierra, \u201cFeature subset se-lection by Bayesian networks based optimization,\u201d Artificial Intelligence, vol. 123, no. 1-2, pp. 157-184, 1999","journal-title":"Artificial Intelligence"},{"key":"13_CR17_13","first-page":"303","volume-title":"GECCO 2002: Proceedings of the Genetic and Evolution-ary Computation Conference","author":"E Cant\u00fa-Paz","year":"2002","unstructured":"Erick Cant\u00fa-Paz, \u201cFeature subset selection by estimation of distribution algorithms,\u201d in GECCO 2002: Proceedings of the Genetic and Evolution-ary Computation Conference, W. B. Langdon, E. Cant\u00fa-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, (Eds.), pp. 303-310, Morgan Kaufmann, San Francisco, CA, 2002"},{"issue":"2","key":"13_CR18_13","doi-asserted-by":"publisher","first-page":"164","DOI":"10.1109\/4235.850656","volume":"4","author":"ML Raymer","year":"2000","unstructured":"M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and A. K. Jain, \u201cDimensionality reduction using genetic algorithms,\u201d IEEE Transactions on Evolutionary Computation, vol. 4, no. 2, pp. 164-171, 2000","journal-title":"IEEE Transactions on Evolutionary Computation"},{"issue":"2","key":"13_CR19_13","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1016\/S0888-613X(01)00038-X","volume":"27","author":"I Inza","year":"2001","unstructured":"I. Inza, P. Larra\u00f1aga, and B. Sierra, \u201cFeature subset selection by Bayesian networks: A comparison with genetic and sequential algorithms,\u201d International Journal of Approximate Reasoning, vol. 27, no. 2, pp. 143-164, 2001","journal-title":"International Journal of Approximate Reasoning"},{"volume-title":"Estimation of Distribution Algorithms: A new tool for Evolutionary Computation","year":"2001","author":"I Inza","key":"13_CR20_13","unstructured":"I. Inza, P. Larra\u00f1aga, and B. Sierra, \u201cFeature subset selection by estimation of distribution algorithms,\u201d in Estimation of Distribution Algorithms: A new tool for Evolutionary Computation, P. Larra\u00f1aga and J. A. Lozano, (Eds.), Kluwer Academic, Dordrecht Hingham, MA 2001"},{"key":"13_CR21_13","first-page":"53","volume-title":"IEEE Mountain Workshop on Soft Computing in Industrial Applications","author":"M Ozdemir","year":"2001","unstructured":"M. Ozdemir, M. J. Embrechts, F. Arciniegas, C. M. Breneman, L. Lock-wood, and K. P. Bennett, \u201cFeature selection for in-silico drug design using genetic algorithms and neural networks,\u201d in IEEE Mountain Workshop on Soft Computing in Industrial Applications. pp. 53-57, IEEE, USA 2001"},{"key":"13_CR22_13","first-page":"537","volume-title":"IEEE International Conference on Evolutionary Computation","author":"PL Lanzi","year":"1997","unstructured":"P.L. Lanzi, \u201cFast feature selection with genetic algorithms: A wrapper approach,\u201d in IEEE International Conference on Evolutionary Computation. pp. 537-540, IEEE, USA 1997"},{"issue":"10","key":"13_CR23_13","doi-asserted-by":"publisher","first-page":"1089","DOI":"10.1109\/34.799913","volume":"21","author":"I-S Oh","year":"1999","unstructured":"I.-S. Oh, J.-S. Lee, and C. Suen,\u201cAnalysis of class separation and combination of class-dependent features for handwritting recognition,\u201d IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 10, pp. 1089-1094, 1999","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"13_CR24_13","unstructured":"C.L. Blake and C.J. Merz, \u201cUCI repository of machine learning databases,\u201d 1998"},{"key":"13_CR25_13","first-page":"81","volume":"1","author":"JR Quinlan","year":"1986","unstructured":"J. R. Quinlan, \u201cInduction of decision trees,\u201d Machine Learning, vol. 1, pp. 81-106, 1986","journal-title":"Machine Learning"},{"issue":"3","key":"13_CR26_13","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1162\/evco.1999.7.3.231","volume":"7","author":"G Harik","year":"1999","unstructured":"G. Harik, E. Cant\u00fa-Paz, D. E. Goldberg, and B. L. Miller, \u201cThe gambler\u2019s ruin problem, genetic algorithms, and the sizing of populations,\u201d Evolutionary Computation, vol. 7, no. 3, pp. 231-253, 1999","journal-title":"Evolutionary Computation"},{"key":"13_CR27_13","first-page":"523","volume-title":"Proceedings of 1998 IEEE Iternational Conference on Evolutionary Computation, Institute of Electrical and Electronics Engineers","author":"GR Harik","year":"1998","unstructured":"G. R. Harik, F. G. Lobo, and D. E. Goldberg, \u201cThe compact genetic algorithm,\u201d in Proceedings of 1998 IEEE Iternational Conference on Evolutionary Computation, Institute of Electrical and Electronics Engineers, pp. 523-528, IEEE Service Center, Piscataway, NJ, 1998"},{"key":"13_CR28_13","unstructured":"S. Baluja, \u201cPopulation-based incremental learning: A method for integrating genetic search based function optimization and competitive learning,\u201d Tech. Rep. No. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA, 1994"},{"issue":"3","key":"13_CR29_13","doi-asserted-by":"publisher","first-page":"303","DOI":"10.1162\/evco.1997.5.3.303","volume":"5","author":"H M\u00fchlenbein","year":"1998","unstructured":"H. M\u00fchlenbein, \u201cThe equation for the response to selection and its use for prediction,\u201d Evolutionary Computation, vol. 5, no. 3, pp. 303-346, 1998","journal-title":"Evolutionary Computation"},{"key":"13_CR30_13","first-page":"74","volume-title":"Proceedings of the 18th International Conference on Machine Learning","author":"D Sanmay","year":"2001","unstructured":"Sanmay Das, \u201cFilters, wrappers and a boosting-based hybrid for feature selection,\u201d in Proceedings of the 18th International Conference on Machine Learning, Carla Brodley and Andrea Danyluk, (Eds.), pp. 74-81, Morgan Kaufmann, San Francisco, CA, 2001"},{"key":"13_CR31_13","first-page":"148","volume-title":"Proceedings of the Thirteenth International Conference on Machine Learning","author":"Y Freund","year":"1996","unstructured":"Y. Freund and R. E. Schapire, \u201cExperiments with a new boosting algorithm,\u201d in Proceedings of the Thirteenth International Conference on Machine Learning, L. Saitta, (Ed.), pp. 148-156, Morgan Kaufmann, San Mateo, CA, 1996"},{"issue":"1","key":"13_CR32_13","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1145\/272991.272995","volume":"8","author":"M Matsumoto","year":"1998","unstructured":"M. Matsumoto and T. Nishimura,\u201cMersenne twister: A623-dimensionally equidistributed uniform pseudorandom number generator,\u201d ACM Transactions on Modeling and Computer Simulation, vol. 8, no. 1, pp. 3-30, 1998","journal-title":"ACM Transactions on Modeling and Computer Simulation"},{"issue":"2","key":"13_CR33_13","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1162\/evco.1996.4.2.113","volume":"4","author":"BL Miller","year":"1996","unstructured":"B. L. Miller and D. E. Goldberg, \u201cGenetic algorithms, selection schemes, and the varying effects of noise,\u201d Evolutionary Computation, vol. 4, no. 2, pp. 113-131, 1996","journal-title":"Evolutionary Computation"},{"issue":"7","key":"13_CR34_13","doi-asserted-by":"publisher","first-page":"1895","DOI":"10.1162\/089976698300017197","volume":"10","author":"TG Dietterich","year":"1998","unstructured":"T. G. Dietterich, \u201cApproximate statistical tests for comparing supervised classification learning algorithms,\u201d Neural Computation, vol. 10, no. 7, pp. 1895-1924, 1998","journal-title":"Neural Computation"},{"key":"13_CR35_13","doi-asserted-by":"publisher","first-page":"1885","DOI":"10.1162\/089976699300016007","volume":"11","author":"E Alpaydin","year":"1999","unstructured":"E. Alpaydin, \u201cCombined 5\u00d72 cv F test for comparing supervised classification algorithms,\u201d Neural Computation, vol. 11, pp. 1885-1892, 1999","journal-title":"Neural Computation"},{"key":"13_CR36_13","doi-asserted-by":"publisher","first-page":"1371","DOI":"10.1162\/153244303322753715","volume":"3","author":"J Reunanen","year":"2003","unstructured":"J. Reunanen, \u201cOverfitting in making comparisons between variable selec-tion methods,\u201d Journal of Machine Learning Research, vol. 3, pp. 1371-1382,2003","journal-title":"Journal of Machine Learning Research"},{"issue":"10","key":"13_CR37_13","doi-asserted-by":"publisher","first-page":"6562","DOI":"10.1073\/pnas.102102699","volume":"99","author":"C Ambroise","year":"2002","unstructured":"C. Ambroise and G. J. McLachlan, \u201cSelection bias in gene extraction on the basis of microarray gene-expression data,\u201d Proceedings of the National Academy of Sciences, vol. 99, no. 10, pp. 6562-6566, 2002","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"13_CR38_13","first-page":"48","volume-title":"Data Mining: A Heuristic Approach","author":"E Cantu-Paz","year":"2002","unstructured":"E. Cantu-Paz and C. Kamath, \u201cOn the use of evolutionary algorithms in data mining,\u201d in Data Mining: A Heuristic Approach, H. Abbass, R. Sarker, and C. Newton, (Eds.), pp. 48-71. IDEA Group, Hershey, PA, 2002"}],"container-title":["Studies in Computational Intelligence","Scalable Optimization via Probabilistic Modeling"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-540-34954-9_13.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,10]],"date-time":"2024-02-10T01:55:58Z","timestamp":1707530158000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-540-34954-9_13"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2006]]},"ISBN":["9783540349532","9783540349549"],"references-count":38,"URL":"https:\/\/doi.org\/10.1007\/978-3-540-34954-9_13","relation":{},"ISSN":["1860-949X","1860-9503"],"issn-type":[{"type":"print","value":"1860-949X"},{"type":"electronic","value":"1860-9503"}],"subject":[],"published":{"date-parts":[[2006]]}}}