{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T17:55:40Z","timestamp":1725558940014},"publisher-location":"Berlin, Heidelberg","reference-count":12,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"type":"print","value":"9783540241324"},{"type":"electronic","value":"9783540305590"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2004]]},"DOI":"10.1007\/978-3-540-30559-0_25","type":"book-chapter","created":{"date-parts":[[2010,7,2]],"date-time":"2010-07-02T19:01:42Z","timestamp":1278097302000},"page":"296-307","source":"Crossref","is-referenced-by-count":7,"title":["Unhooking Circulant Graphs: A Combinatorial Method for Counting Spanning Trees and Other Parameters"],"prefix":"10.1007","author":[{"given":"Mordecai J.","family":"Golin","sequence":"first","affiliation":[]},{"given":"Yiu Cho","family":"Leung","sequence":"additional","affiliation":[]}],"member":"297","reference":[{"key":"25_CR1","first-page":"258","volume":"23.3","author":"G. Baron","year":"1985","unstructured":"Baron, G., Prodinger, H., Tichy, R.F., Boesch, F.T., Wang, J.F.: The Number of Spanning Trees in the Square of a Cycle. Fibonacci Quarterly\u00a023.3, 258\u2013264 (1985)","journal-title":"Fibonacci Quarterly"},{"key":"25_CR2","doi-asserted-by":"publisher","first-page":"175","DOI":"10.1016\/0016-0032(73)90227-5","volume":"295","author":"S. Bedrosian","year":"1973","unstructured":"Bedrosian, S.: The Fibonacci Numbers via Trigonometric Expressions. J. Franklin Inst.\u00a0295, 175\u2013177 (1973)","journal-title":"J. Franklin Inst."},{"key":"25_CR3","first-page":"16","volume-title":"Notes from New York Graph Theory Day V","author":"F.T. Boesch","year":"1982","unstructured":"Boesch, F.T., Wang, J.F.: A Conjecture on the Number of Spanning Trees in the Square of a Cycle. In: Notes from New York Graph Theory Day V, p. 16. New York Academy Sciences, New York (1982)"},{"key":"25_CR4","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1007\/BF01788093","volume":"2","author":"F.T. Boesch","year":"1986","unstructured":"Boesch, F.T., Prodinger, H.: Spanning Tree Formulas and Chebyshev Polynomials. Graphs and Combinatorics\u00a02, 191\u2013200 (1986)","journal-title":"Graphs and Combinatorics"},{"key":"25_CR5","volume-title":"The combinatorics of network reliability","author":"C.J. Colbourn","year":"1987","unstructured":"Colbourn, C.J.: The combinatorics of network reliability. Oxford University Press, New York (1987)"},{"key":"25_CR6","doi-asserted-by":"crossref","unstructured":"Golin, M.J., Leung, Y.C.: Unhooking Circulant Graphs: A Combinatorial Method for Counting Spanning Trees and Other Parameters Technical Report HKUST-TCSC-2004-??, Available at http:\/\/www.cs.ust.hk\/tcsc\/RR\/","DOI":"10.1007\/978-3-540-30559-0_25"},{"key":"25_CR7","first-page":"541","volume-title":"Mathematics and Computer Science II: Algorithms, Trees, Combinatorics and Probabilities","author":"M.J. Golin","year":"2002","unstructured":"Golin, M.J., Zhang, Y.P.: Further applications of Chebyshev polynomials in the derivation of spanning tree formulas for circulant graphs. In: Mathematics and Computer Science II: Algorithms, Trees, Combinatorics and Probabilities, pp. 541\u2013552. Birkhauser-Verlag, Basel (2002)"},{"key":"25_CR8","doi-asserted-by":"publisher","first-page":"497","DOI":"10.1002\/andp.18471481202","volume":"72","author":"G. Kirchhoff","year":"1847","unstructured":"Kirchhoff, G.: \u00dcber die Aufl\u00f6sung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Str\u00f6me gef\u00fchrt wird. Ann. Phys. Chem.\u00a072, 497\u2013508 (1847)","journal-title":"Ann. Phys. Chem."},{"key":"25_CR9","doi-asserted-by":"publisher","first-page":"40","DOI":"10.2307\/2319131","volume":"82","author":"D.J. Kleitman","year":"1975","unstructured":"Kleitman, D.J., Golden, B.: Counting Trees in a Certain Class of Graphs. Amer. Math. Monthly\u00a082, 40\u201344 (1975)","journal-title":"Amer. Math. Monthly"},{"key":"25_CR10","doi-asserted-by":"publisher","first-page":"293","DOI":"10.1016\/S0012-365X(96)00092-1","volume":"169","author":"X. Yong","year":"1997","unstructured":"Yong, X., Talip, A.: The Numbers of Spanning Trees of the Cubic Cycle $c^3_N$ and the Quadruple Cycle $c^4_N$ . Discrete Math.\u00a0169, 293\u2013298 (1997)","journal-title":"Discrete Math."},{"key":"25_CR11","first-page":"12","volume":"11","author":"X. Yong","year":"1994","unstructured":"Yong, X., Zhang, F.J.: \u201cA simple proof for the complexity of square cycle $c^2_P$ . J. Xinjiang Univ.\u00a011, 12\u201316 (1994)","journal-title":"J. Xinjiang Univ."},{"key":"25_CR12","doi-asserted-by":"publisher","first-page":"337","DOI":"10.1016\/S0012-365X(99)00414-8","volume":"223","author":"Y.P. Zhang","year":"2000","unstructured":"Zhang, Y.P., Yong, X., Golin, M.J.: The number of spanning trees in circulant graphs. Discrete Math.\u00a0223, 337\u2013350 (2000)","journal-title":"Discrete Math."}],"container-title":["Lecture Notes in Computer Science","Graph-Theoretic Concepts in Computer Science"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-540-30559-0_25.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,11,19]],"date-time":"2020-11-19T04:22:20Z","timestamp":1605759740000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-540-30559-0_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2004]]},"ISBN":["9783540241324","9783540305590"],"references-count":12,"URL":"https:\/\/doi.org\/10.1007\/978-3-540-30559-0_25","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2004]]}}}